Group
Guide to the Secure Configuration of Oracle Linux 8
Group contains 73 groups and 166 rules |
Group
System Settings
Group contains 41 groups and 93 rules |
[ref]
Contains rules that check correct system settings. |
Group
Installing and Maintaining Software
Group contains 9 groups and 23 rules |
[ref]
The following sections contain information on
security-relevant choices during the initial operating system
installation process and the setup of software
updates. |
Group
System and Software Integrity
Group contains 5 groups and 11 rules |
[ref]
System and software integrity can be gained by installing antivirus, increasing
system encryption strength with FIPS, verifying installed software, enabling SELinux,
installing an Intrusion Prevention System, etc. However, installing or enabling integrity
checking tools cannot prevent intrusions, but they can detect that an intrusion
may have occurred. Requirements for integrity checking may be highly dependent on
the environment in which the system will be used. Snapshot-based approaches such
as AIDE may induce considerable overhead in the presence of frequent software updates. |
Group
Software Integrity Checking
Group contains 2 groups and 4 rules |
[ref]
Both the AIDE (Advanced Intrusion Detection Environment)
software and the RPM package management system provide
mechanisms for verifying the integrity of installed software.
AIDE uses snapshots of file metadata (such as hashes) and compares these
to current system files in order to detect changes.
The RPM package management system can conduct integrity
checks by comparing information in its metadata database with
files installed on the system. |
Group
Verify Integrity with RPM
Group contains 3 rules |
[ref]
The RPM package management system includes the ability
to verify the integrity of installed packages by comparing the
installed files with information about the files taken from the
package metadata stored in the RPM database. Although an attacker
could corrupt the RPM database (analogous to attacking the AIDE
database as described above), this check can still reveal
modification of important files. To list which files on the system differ from what is expected by the RPM database:
$ rpm -qVa
See the man page for rpm to see a complete explanation of each column. |
Rule
Verify File Hashes with RPM
[ref] | Without cryptographic integrity protections, system executables and files can be altered by
unauthorized users without detection. The RPM package management system can check the hashes
of installed software packages, including many that are important to system security.
To verify that the cryptographic hash of system files and commands matches vendor values, run
the following command to list which files on the system have hashes that differ from what is
expected by the RPM database:
$ rpm -Va --noconfig | grep '^..5'
If the file was not expected to change, investigate the cause of the change using audit logs
or other means. The package can then be reinstalled to restore the file. Run the following
command to determine which package owns the file:
$ rpm -qf FILENAME
The package can be reinstalled from a yum repository using the command:
$ sudo yum reinstall PACKAGENAME
Alternatively, the package can be reinstalled from trusted media using the command:
$ sudo rpm -Uvh PACKAGENAME
Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of packages present on the system. It is not a
problem in most cases, but especially systems with a large number of installed packages
can be affected. | Rationale: | The hashes of important files like system executables should match the
information given by the RPM database. Executables with erroneous hashes could
be a sign of nefarious activity on the system. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_rpm_verify_hashes | References: | cis-csc | 11, 2, 3, 9 | cjis | 5.10.4.1 | cobit5 | APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02 | cui | 3.3.8, 3.4.1 | disa | CCI-000366, CCI-001749 | hipaa | 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4 | isa-62443-2013 | SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6 | iso27001-2013 | A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4 | nist | CM-6(d), CM-6(c), SI-7, SI-7(1), SI-7(6), AU-9(3) | nist-csf | PR.DS-6, PR.DS-8, PR.IP-1 | pcidss | Req-11.5 | os-srg | SRG-OS-000480-GPOS-00227 | pcidss4 | 11.5.2 |
| |
|
Rule
Verify and Correct Ownership with RPM
[ref] | The RPM package management system can check file ownership permissions of installed software
packages, including many that are important to system security. After locating a file with
incorrect permissions, which can be found with:
rpm -Va | awk '{ if (substr($0,6,1)=="U" || substr($0,7,1)=="G") print $NF }'
run the following command to determine which package owns it:
$ rpm -qf FILENAME
Next, run the following command to reset its permissions to the correct values:
$ sudo rpm --restore PACKAGENAME
Warning:
Profiles may require that specific files be owned by root while the default owner defined
by the vendor is different. Such files will be reported as a finding and need to be
evaluated according to your policy and deployment environment. Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of packages present on the system. It is not a
problem in most cases, but especially systems with a large number of installed packages
can be affected. | Rationale: | Ownership of binaries and configuration files that is incorrect could allow an unauthorized
user to gain privileges that they should not have. The ownership set by the vendor should be
maintained. Any deviations from this baseline should be investigated. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_rpm_verify_ownership | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 3, 5, 6, 9 | cjis | 5.10.4.1 | cobit5 | APO01.06, APO11.04, BAI03.05, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.04, DSS05.07, DSS06.02, MEA02.01 | cui | 3.3.8, 3.4.1 | disa | CCI-001494, CCI-001496 | isa-62443-2009 | 4.3.3.3.9, 4.3.3.5.8, 4.3.3.7.3, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 5.2, SR 7.6 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.5.1, A.12.6.2, A.12.7.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R4.2, CIP-003-8 R6, CIP-007-3 R4, CIP-007-3 R4.1, CIP-007-3 R4.2 | nist | CM-6(d), CM-6(c), SI-7, SI-7(1), SI-7(6), AU-9(3) | nist-csf | PR.AC-4, PR.DS-5, PR.IP-1, PR.PT-1 | pcidss | Req-11.5 | os-srg | SRG-OS-000256-GPOS-00097, SRG-OS-000257-GPOS-00098, SRG-OS-000278-GPOS-00108 | pcidss4 | 11.5.2 |
| |
|
Rule
Verify and Correct File Permissions with RPM
[ref] | The RPM package management system can check file access permissions of installed software
packages, including many that are important to system security. Verify that the file
permissions of system files and commands match vendor values. Check the file permissions with
the following command:
$ sudo rpm -Va | awk '{ if (substr($0,2,1)=="M") print $NF }'
Output indicates files that do not match vendor defaults.
After locating a file with incorrect permissions, run the following command to determine which
package owns it:
$ rpm -qf FILENAME
Next, run the following command to reset its permissions to the correct values:
$ sudo rpm --restore PACKAGENAME
Warning:
Profiles may require that specific files have stricter file permissions than defined by
the vendor. Such files will be reported as a finding and need to be evaluated according to
your policy and deployment environment. Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of packages present on the system. It is not a
problem in most cases, but especially systems with a large number of installed packages
can be affected. | Rationale: | Permissions on system binaries and configuration files that are too generous could allow an
unauthorized user to gain privileges that they should not have. The permissions set by the
vendor should be maintained. Any deviations from this baseline should be investigated. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_rpm_verify_permissions | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 3, 5, 6, 9 | cjis | 5.10.4.1 | cobit5 | APO01.06, APO11.04, BAI03.05, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.04, DSS05.07, DSS06.02, MEA02.01 | cui | 3.3.8, 3.4.1 | disa | CCI-001493, CCI-001494, CCI-001495, CCI-001496 | hipaa | 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i) | isa-62443-2009 | 4.3.3.3.9, 4.3.3.5.8, 4.3.3.7.3, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 5.2, SR 7.6 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.5.1, A.12.6.2, A.12.7.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R4.2, CIP-003-8 R6, CIP-007-3 R4, CIP-007-3 R4.1, CIP-007-3 R4.2 | nist | CM-6(d), CM-6(c), SI-7, SI-7(1), SI-7(6), AU-9(3), CM-6(a) | nist-csf | PR.AC-4, PR.DS-5, PR.IP-1, PR.PT-1 | pcidss | Req-11.5 | os-srg | SRG-OS-000256-GPOS-00097, SRG-OS-000257-GPOS-00098, SRG-OS-000258-GPOS-00099, SRG-OS-000278-GPOS-00108 | pcidss4 | 11.5.2 |
| |
|
Group
Verify Integrity with AIDE
Group contains 1 rule |
[ref]
AIDE conducts integrity checks by comparing information about
files with previously-gathered information. Ideally, the AIDE database is
created immediately after initial system configuration, and then again after any
software update. AIDE is highly configurable, with further configuration
information located in /usr/share/doc/aide-VERSION
. |
Rule
Install AIDE
[ref] | The aide package can be installed with the following command:
$ sudo yum install aide
| Rationale: | The AIDE package must be installed if it is to be available for integrity checking. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_aide_installed | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 2, 3, 5, 7, 8, 9 | cjis | 5.10.1.3 | cobit5 | APO01.06, BAI01.06, BAI02.01, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS03.05, DSS04.07, DSS05.02, DSS05.03, DSS05.05, DSS05.07, DSS06.02, DSS06.06 | disa | CCI-002696, CCI-001744 | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4 | isa-62443-2013 | SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 4.1, SR 6.2, SR 7.6 | ism | 1034, 1288, 1341, 1417 | iso27001-2013 | A.11.2.4, A.12.1.2, A.12.2.1, A.12.4.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.14.2.7, A.15.2.1, A.8.2.3 | nist | CM-6(a) | nist-csf | DE.CM-1, DE.CM-7, PR.DS-1, PR.DS-6, PR.DS-8, PR.IP-1, PR.IP-3 | pcidss | Req-11.5 | os-srg | SRG-OS-000445-GPOS-00199 | stigid | OL08-00-010359 | anssi | R76, R79 | pcidss4 | 11.5.2 | stigref | SV-252654r958944_rule |
| |
|
Group
Federal Information Processing Standard (FIPS)
Group contains 3 rules |
[ref]
The Federal Information Processing Standard (FIPS) is a computer security standard which
is developed by the U.S. Government and industry working groups to validate the quality
of cryptographic modules. The FIPS standard provides four security levels to ensure
adequate coverage of different industries, implementation of cryptographic modules, and
organizational sizes and requirements.
FIPS 140-2 is the current standard for validating that mechanisms used to access cryptographic modules
utilize authentication that meets industry and government requirements. For government systems, this allows
Security Levels 1, 2, 3, or 4 for use on Oracle Linux 8.
See http://csrc.nist.gov/publications/PubsFIPS.html for more information. |
Rule
Enable Dracut FIPS Module
[ref] | To enable FIPS mode, run the following command:
fips-mode-setup --enable
To enable FIPS, the system requires that the fips module is added in dracut configuration.
Check if /etc/dracut.conf.d/40-fips.conf contain add_dracutmodules+=" fips "
Warning:
The system needs to be rebooted for these changes to take effect. Warning:
System Crypto Modules must be provided by a vendor that undergoes FIPS-140 certifications.
FIPS-140 is applicable to all Federal agencies that use cryptographic-based security
systems to protect sensitive information in computer and telecommunication systems
(including voice systems) as defined in Section 5131 of the Information Technology
Management Reform Act of 1996, Public Law 104-106. This standard shall be used in designing
and implementing cryptographic modules that Federal departments and agencies operate or are
operated for them under contract.
See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
To meet this, the system has to have cryptographic software provided by a vendor that has
undergone this certification. This means providing documentation, test results, design
information, and independent third party review by an accredited lab. While open source
software is capable of meeting this, it does not meet FIPS-140 unless the vendor submits to
this process. | Rationale: | Use of weak or untested encryption algorithms undermines the purposes of utilizing encryption to
protect data. The operating system must implement cryptographic modules adhering to the higher
standards approved by the federal government since this provides assurance they have been tested
and validated. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_enable_dracut_fips_module | References: | disa | CCI-002450, CCI-000068, CCI-002418, CCI-000877 | ism | 1446 | nerc-cip | CIP-003-8 R4.2, CIP-007-3 R5.1 | nist | SC-12(2), SC-12(3), IA-7, SC-13, CM-6(a), SC-12 | ospp | FCS_RBG_EXT.1 | os-srg | SRG-OS-000478-GPOS-00223 | stigid | OL08-00-010020 | stigref | SV-248524r958408_rule |
| |
|
Rule
Enable FIPS Mode in GRUB2
[ref] | To ensure FIPS mode is enabled, install package dracut-fips , and rebuild initramfs by running the following commands:
$ sudo yum install dracut-fips
dracut -f
After the dracut command has been run, add the argument fips=1 to the default
GRUB 2 command line for the Linux operating system in
/etc/default/grub , in the manner below:
GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=VolGroup/LogVol06 rd.lvm.lv=VolGroup/lv_swap rhgb quiet rd.shell=0 fips=1"
Finally, rebuild the grub.cfg file by using the
grub2-mkconfig -o command as follows:
Warning:
Running dracut -f will overwrite the existing initramfs file. Warning:
The system needs to be rebooted for these changes to take effect. Warning:
System Crypto Modules must be provided by a vendor that undergoes
FIPS-140 certifications.
FIPS-140 is applicable to all Federal agencies that use
cryptographic-based security systems to protect sensitive information
in computer and telecommunication systems (including voice systems) as
defined in Section 5131 of the Information Technology Management Reform
Act of 1996, Public Law 104-106. This standard shall be used in
designing and implementing cryptographic modules that Federal
departments and agencies operate or are operated for them under
contract. See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
To meet this, the system has to have cryptographic software provided by
a vendor that has undergone this certification. This means providing
documentation, test results, design information, and independent third
party review by an accredited lab. While open source software is
capable of meeting this, it does not meet FIPS-140 unless the vendor
submits to this process. | Rationale: | Use of weak or untested encryption algorithms undermines the purposes of utilizing encryption to
protect data. The operating system must implement cryptographic modules adhering to the higher
standards approved by the federal government since this provides assurance they have been tested
and validated. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_grub2_enable_fips_mode | References: | cis-csc | 12, 15, 8 | cjis | 5.10.1.2 | cobit5 | APO13.01, DSS01.04, DSS05.02, DSS05.03 | cui | 3.13.8, 3.13.11 | disa | CCI-000068, CCI-000803, CCI-001199, CCI-002450, CCI-002476 | isa-62443-2009 | 4.3.3.6.6 | isa-62443-2013 | SR 1.13, SR 2.6, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.13.1.1, A.13.2.1, A.14.1.3, A.6.2.1, A.6.2.2 | nerc-cip | CIP-003-8 R4.2, CIP-007-3 R5.1 | nist | SC-12(2), SC-12(3), IA-7, SC-13, CM-6(a), SC-12 | nist-csf | PR.AC-3, PR.PT-4 | os-srg | SRG-OS-000033-GPOS-00014, SRG-OS-000185-GPOS-00079, SRG-OS-000396-GPOS-00176, SRG-OS-000405-GPOS-00184, SRG-OS-000478-GPOS-00223 |
| |
|
Rule
Verify that the system was booted with fips=1
[ref] | On a system where FIPS 140 mode is enabled, the system must be booted with the
The file /proc/sys/crypto/fips_enabled must have the contents of 1
To verify the system has been booted in FIPS mode, run the following command:
# cat /proc/sys/crypto/fips_enabled
1
Warning:
To configure the OS to run in FIPS 140 mode, the kernel parameter "fips=1" needs to be added during its installation.
Enabling FIPS mode on a preexisting system involves a number of modifications to it and therefore is not supported. Warning:
System Crypto Modules must be provided by a vendor that undergoes
FIPS-140 certifications.
FIPS-140 is applicable to all Federal agencies that use
cryptographic-based security systems to protect sensitive information
in computer and telecommunication systems (including voice systems) as
defined in Section 5131 of the Information Technology Management Reform
Act of 1996, Public Law 104-106. This standard shall be used in
designing and implementing cryptographic modules that Federal
departments and agencies operate or are operated for them under
contract. See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
To meet this, the system has to have cryptographic software provided by
a vendor that has undergone this certification. This means providing
documentation, test results, design information, and independent third
party review by an accredited lab. While open source software is
capable of meeting this, it does not meet FIPS-140 unless the vendor
submits to this process. | Rationale: | Use of weak or untested encryption algorithms undermines the purposes of utilizing encryption to
protect data. The operating system must implement cryptographic modules adhering to the higher
standards approved by the federal government since this provides assurance they have been tested
and validated. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_system_booted_in_fips_mode | References: | disa | CCI-002450 | nist | SC-12(2), SC-12(3), SC-13 | os-srg | SRG-OS-000396-GPOS-00176, SRG-OS-000478-GPOS-00223 |
| |
|
Group
System Cryptographic Policies
Group contains 4 rules |
[ref]
Linux has the capability to centrally configure cryptographic polices. The command
update-crypto-policies is used to set the policy applicable for the various
cryptographic back-ends, such as SSL/TLS libraries. The configured cryptographic
policies will be the default policy used by these backends unless the application
user configures them otherwise. When the system has been configured to use the
centralized cryptographic policies, the administrator is assured that any application
that utilizes the supported backends will follow a policy that adheres to the
configured profile.
Currently the supported backends are:
- GnuTLS library
- OpenSSL library
- NSS library
- OpenJDK
- Libkrb5
- BIND
- OpenSSH
Applications and languages which rely on any of these backends will follow the
system policies as well. Examples are apache httpd, nginx, php, and others. |
Rule
Configure System Cryptography Policy
[ref] | To configure the system cryptography policy to use ciphers only from the FIPS
policy, run the following command:
$ sudo update-crypto-policies --set FIPS
The rule checks if settings for selected crypto policy are configured as expected. Configuration files in the /etc/crypto-policies/back-ends are either symlinks to correct files provided by Crypto-policies package or they are regular files in case crypto policy customizations are applied.
Crypto policies may be customized by crypto policy modules, in which case it is delimited from the base policy using a colon. Warning:
The system needs to be rebooted for these changes to take effect. Warning:
System Crypto Modules must be provided by a vendor that undergoes
FIPS-140 certifications.
FIPS-140 is applicable to all Federal agencies that use
cryptographic-based security systems to protect sensitive information
in computer and telecommunication systems (including voice systems) as
defined in Section 5131 of the Information Technology Management Reform
Act of 1996, Public Law 104-106. This standard shall be used in
designing and implementing cryptographic modules that Federal
departments and agencies operate or are operated for them under
contract. See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
To meet this, the system has to have cryptographic software provided by
a vendor that has undergone this certification. This means providing
documentation, test results, design information, and independent third
party review by an accredited lab. While open source software is
capable of meeting this, it does not meet FIPS-140 unless the vendor
submits to this process. | Rationale: | Centralized cryptographic policies simplify applying secure ciphers across an operating system and
the applications that run on that operating system. Use of weak or untested encryption algorithms
undermines the purposes of utilizing encryption to protect data. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_configure_crypto_policy | References: | disa | CCI-000068, CCI-003123, CCI-002450, CCI-000877, CCI-002418, CCI-001453, CCI-002890 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.312(e)(1), 164.312(e)(2)(ii) | ism | 1446 | nerc-cip | CIP-003-8 R4.2, CIP-007-3 R5.1, CIP-007-3 R7.1 | nist | AC-17(a), AC-17(2), CM-6(a), MA-4(6), SC-13, SC-12(2), SC-12(3) | ospp | FCS_COP.1(1), FCS_COP.1(2), FCS_COP.1(3), FCS_COP.1(4), FCS_CKM.1, FCS_CKM.2, FCS_TLSC_EXT.1 | os-srg | SRG-OS-000396-GPOS-00176, SRG-OS-000393-GPOS-00173, SRG-OS-000394-GPOS-00174 | stigid | OL08-00-010020 | pcidss4 | 2.2.7, 2.2 | stigref | SV-248524r958408_rule |
| |
|
Rule
Configure Kerberos to use System Crypto Policy
[ref] | Crypto Policies provide a centralized control over crypto algorithms usage of many packages.
Kerberos is supported by crypto policy, but it's configuration may be
set up to ignore it.
To check that Crypto Policies settings for Kerberos are configured correctly, examine that there is a symlink at
/etc/krb5.conf.d/crypto-policies targeting /etc/cypto-policies/back-ends/krb5.config.
If the symlink exists, Kerberos is configured to use the system-wide crypto policy settings. | Rationale: | Overriding the system crypto policy makes the behavior of Kerberos violate expectations,
and makes system configuration more fragmented. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_configure_kerberos_crypto_policy | References: | | |
|
Rule
Configure SSH to use System Crypto Policy
[ref] | Crypto Policies provide a centralized control over crypto algorithms usage of many packages.
SSH is supported by crypto policy, but the SSH configuration may be
set up to ignore it.
To check that Crypto Policies settings are configured correctly, ensure that
the CRYPTO_POLICY variable is either commented or not set at all
in the /etc/sysconfig/sshd . | Rationale: | Overriding the system crypto policy makes the behavior of the SSH service violate expectations,
and makes system configuration more fragmented. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_configure_ssh_crypto_policy | References: | disa | CCI-001453 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.312(e)(1), 164.312(e)(2)(ii) | nerc-cip | CIP-003-8 R4.2, CIP-007-3 R5.1, CIP-007-3 R7.1 | nist | AC-17(a), AC-17(2), CM-6(a), MA-4(6), SC-13 | ospp | FCS_SSH_EXT.1, FCS_SSHS_EXT.1, FCS_SSHC_EXT.1 | pcidss | Req-2.2 | os-srg | SRG-OS-000250-GPOS-00093 | stigid | OL08-00-010287 | pcidss4 | 2.2.7, 2.2 | stigref | SV-248560r991554_rule |
| |
|
Rule
OpenSSL uses strong entropy source
[ref] | By default, OpenSSL doesn't always use a SP800-90A compliant random number generator.
A way to configure OpenSSL to always use a strong source is to setup a wrapper that
defines a shell function that shadows the actual openssl binary,
and that ensures that the -rand /dev/random option is added to every openssl invocation.
To do so, place the following shell snippet exactly as-is to /etc/profile.d/openssl-rand.sh :
# provide a default -rand /dev/random option to openssl commands that
# support it
# written inefficiently for maximum shell compatibility
openssl()
(
openssl_bin=/usr/bin/openssl
case "$*" in
# if user specified -rand, honor it
*\ -rand\ *|*\ -help*) exec $openssl_bin "$@" ;;
esac
cmds=`$openssl_bin list -digest-commands -cipher-commands | tr '\n' ' '`
for i in `$openssl_bin list -commands`; do
if $openssl_bin list -options "$i" | grep -q '^rand '; then
cmds=" $i $cmds"
fi
done
case "$cmds" in
*\ "$1"\ *)
cmd="$1"; shift
exec $openssl_bin "$cmd" -rand /dev/random "$@" ;;
esac
exec $openssl_bin "$@"
)
Warning:
This setting can cause problems on computers without the hardware random generator, because insufficient entropy blocks the program until enough entropy is available. | Rationale: | This rule ensures that openssl invocations always uses SP800-90A compliant random number generator as a default behavior. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_openssl_use_strong_entropy | References: | | |
|
Group
Sudo
Group contains 4 rules |
[ref]
Sudo , which stands for "su 'do'", provides the ability to delegate authority
to certain users, groups of users, or system administrators. When configured for system
users and/or groups, Sudo can allow a user or group to execute privileged commands
that normally only root is allowed to execute.
For more information on Sudo and addition Sudo configuration options, see
https://www.sudo.ws. |
Rule
Install sudo Package
[ref] | The sudo package can be installed with the following command:
$ sudo yum install sudo
| Rationale: | sudo is a program designed to allow a system administrator to give
limited root privileges to users and log root activity. The basic philosophy
is to give as few privileges as possible but still allow system users to
get their work done.
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_sudo_installed | References: | | |
|
Rule
Ensure Users Re-Authenticate for Privilege Escalation - sudo !authenticate
[ref] | The sudo !authenticate option, when specified, allows a user to execute commands using
sudo without having to authenticate. This should be disabled by making sure that the
!authenticate option does not exist in /etc/sudoers configuration file or
any sudo configuration snippets in /etc/sudoers.d/ . | Rationale: | Without re-authentication, users may access resources or perform tasks for which they
do not have authorization.
When operating systems provide the capability to escalate a functional capability, it
is critical that the user re-authenticate. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sudo_remove_no_authenticate | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004895 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-11, CM-6(a) | nist-csf | PR.AC-1, PR.AC-7 | os-srg | SRG-OS-000373-GPOS-00156, SRG-OS-000373-GPOS-00157, SRG-OS-000373-GPOS-00158 | stigid | OL08-00-010381 | stigref | SV-248582r1015035_rule |
| |
|
Rule
Ensure Users Re-Authenticate for Privilege Escalation - sudo NOPASSWD
[ref] | The sudo NOPASSWD tag, when specified, allows a user to execute
commands using sudo without having to authenticate. This should be disabled
by making sure that the NOPASSWD tag does not exist in
/etc/sudoers configuration file or any sudo configuration snippets
in /etc/sudoers.d/ . | Rationale: | Without re-authentication, users may access resources or perform tasks for which they
do not have authorization.
When operating systems provide the capability to escalate a functional capability, it
is critical that the user re-authenticate. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sudo_remove_nopasswd | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004895 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-11, CM-6(a) | nist-csf | PR.AC-1, PR.AC-7 | os-srg | SRG-OS-000373-GPOS-00156, SRG-OS-000373-GPOS-00157, SRG-OS-000373-GPOS-00158 | stigid | OL08-00-010380 | stigref | SV-248581r1015034_rule |
| |
|
Rule
Ensure Users Re-Authenticate for Privilege Escalation - sudo
[ref] | The sudo NOPASSWD and !authenticate option, when
specified, allows a user to execute commands using sudo without having to
authenticate. This should be disabled by making sure that
NOPASSWD and/or !authenticate do not exist in
/etc/sudoers configuration file or any sudo configuration snippets
in /etc/sudoers.d/ ." | Rationale: | Without re-authentication, users may access resources or perform tasks for which they
do not have authorization.
When operating systems provide the capability to escalate a functional capability, it
is critical that the user re-authenticate. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sudo_require_authentication | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-002038, CCI-004895 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-11, CM-6(a) | nist-csf | PR.AC-1, PR.AC-7 | os-srg | SRG-OS-000373-GPOS-00156 | pcidss4 | 2.2.6, 2.2 |
| |
|
Group
System Tooling / Utilities
Group contains 1 rule |
[ref]
The following checks evaluate the system for recommended base packages -- both for installation
and removal. |
Rule
Install rear Package
[ref] | The rear package can be installed with the following command:
$ sudo yum install rear
| Rationale: | rear contains the Relax-and-Recover (ReaR) utility. ReaR produces a bootable
image of a system and restores from backup using this image.
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_rear_installed | |
|
Group
Updating Software
Group contains 7 rules |
[ref]
The yum command line tool is used to install and
update software packages. The system also provides a graphical
software update tool in the System menu, in the Administration submenu,
called Software Update.
Oracle Linux 8 systems contain an installed software catalog called
the RPM database, which records metadata of installed packages. Consistently using
yum or the graphical Software Update for all software installation
allows for insight into the current inventory of installed software on the system.
|
Rule
Configure dnf-automatic to Install Available Updates Automatically
[ref] | To ensure that the packages comprising the available updates will be automatically installed by dnf-automatic , set apply_updates to yes under [commands] section in /etc/dnf/automatic.conf . | Rationale: | Installing software updates is a fundamental mitigation against
the exploitation of publicly-known vulnerabilities. If the most
recent security patches and updates are not installed, unauthorized
users may take advantage of weaknesses in the unpatched software. The
lack of prompt attention to patching could result in a system compromise.
The automated installation of updates ensures that recent security patches
are applied in a timely manner. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_dnf-automatic_apply_updates | References: | ism | 0940, 1144, 1467, 1472, 1483, 1493, 1494, 1495 | nist | SI-2(5), CM-6(a), SI-2(c) | ospp | FMT_SMF_EXT.1 | os-srg | SRG-OS-000805-GPOS-00260 | anssi | R61 |
| |
|
Rule
Configure dnf-automatic to Install Only Security Updates
[ref] | To configure dnf-automatic to install only security updates
automatically, set upgrade_type to security under
[commands] section in /etc/dnf/automatic.conf . | Rationale: | By default, dnf-automatic installs all available updates.
Reducing the amount of updated packages only to updates that were
issued as a part of a security advisory increases the system stability. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_dnf-automatic_security_updates_only | References: | | |
|
Rule
Ensure gpgcheck Enabled In Main yum Configuration
[ref] | The gpgcheck option controls whether
RPM packages' signatures are always checked prior to installation.
To configure yum to check package signatures before installing
them, ensure the following line appears in /etc/yum.conf in
the [main] section:
gpgcheck=1
| Rationale: | Changes to any software components can have significant effects on the
overall security of the operating system. This requirement ensures the
software has not been tampered with and that it has been provided by a
trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system
components must be signed with a certificate recognized and approved by the
organization.
Verifying the authenticity of the software prior to installation
validates the integrity of the patch or upgrade received from a vendor.
This ensures the software has not been tampered with and that it has been
provided by a trusted vendor. Self-signed certificates are disallowed by
this requirement. Certificates used to verify the software must be from an
approved Certificate Authority (CA). | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_globally_activated | References: | cis-csc | 11, 2, 3, 9 | cjis | 5.10.4.1 | cobit5 | APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02 | cui | 3.4.8 | disa | CCI-003992 | hipaa | 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4 | isa-62443-2013 | SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6 | iso27001-2013 | A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4 | nist | CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), SA-12, SA-12(10), CM-11(a), CM-11(b) | nist-csf | PR.DS-6, PR.DS-8, PR.IP-1 | ospp | FPT_TUD_EXT.1, FPT_TUD_EXT.2 | pcidss | Req-6.2 | os-srg | SRG-OS-000366-GPOS-00153 | stigid | OL08-00-010370 | anssi | R59 | pcidss4 | 6.3.3, 6.3 | stigref | SV-248574r1015031_rule |
| |
|
Rule
Ensure gpgcheck Enabled for Local Packages
[ref] | yum should be configured to verify the signature(s) of local packages
prior to installation. To configure yum to verify signatures of local
packages, set the localpkg_gpgcheck to 1 in /etc/yum.conf .
| Rationale: | Changes to any software components can have significant effects to the overall security
of the operating system. This requirement ensures the software has not been tampered and
has been provided by a trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must
be signed with a certificate recognized and approved by the organization. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_local_packages | References: | cis-csc | 11, 3, 9 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05 | cui | 3.4.8 | disa | CCI-003992 | hipaa | 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4 | nist | CM-11(a), CM-11(b), CM-6(a), CM-5(3), SA-12, SA-12(10) | nist-csf | PR.IP-1 | ospp | FPT_TUD_EXT.1, FPT_TUD_EXT.2 | os-srg | SRG-OS-000366-GPOS-00153 | stigid | OL08-00-010371 | anssi | R59 | stigref | SV-248575r1015032_rule |
| |
|
Rule
Ensure gpgcheck Enabled for All yum Package Repositories
[ref] | To ensure signature checking is not disabled for
any repos, remove any lines from files in /etc/yum.repos.d of the form:
gpgcheck=0
| Rationale: | Verifying the authenticity of the software prior to installation validates
the integrity of the patch or upgrade received from a vendor. This ensures
the software has not been tampered with and that it has been provided by a
trusted vendor. Self-signed certificates are disallowed by this
requirement. Certificates used to verify the software must be from an
approved Certificate Authority (CA)." | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_never_disabled | References: | cis-csc | 11, 2, 3, 9 | cjis | 5.10.4.1 | cobit5 | APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02 | cui | 3.4.8 | disa | CCI-003992 | hipaa | 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4 | isa-62443-2013 | SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6 | iso27001-2013 | A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4 | nist | CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), SA-12, SA-12(10), CM-11(a), CM-11(b) | nist-csf | PR.DS-6, PR.DS-8, PR.IP-1 | ospp | FPT_TUD_EXT.1, FPT_TUD_EXT.2 | pcidss | Req-6.2 | os-srg | SRG-OS-000366-GPOS-00153 | stigid | OL08-00-010370 | anssi | R59 | pcidss4 | 6.3.3, 6.3 | stigref | SV-248574r1015031_rule |
| |
|
Rule
Ensure Oracle Linux GPG Key Installed
[ref] | To ensure the system can cryptographically verify base software
packages come from Oracle (and to connect to the Unbreakable Linux Network to
receive them), the Oracle GPG key must properly be installed.
To install the Oracle GPG key, run:
$ sudo uln_register
If the system is not connected to the Internet,
then install the Oracle GPG key from trusted media such as
the Oracle installation CD-ROM or DVD. Assuming the disc is mounted
in /media/cdrom , use the following command as the root user to import
it into the keyring:
$ sudo rpm --import /media/cdrom/RPM-GPG-KEY-oracle
Alternatively, the key may be pre-loaded during the Oracle installation. In
such cases, the key can be installed by running the following command:
sudo rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
| Rationale: | Changes to software components can have significant effects on the
overall security of the operating system. This requirement ensures
the software has not been tampered with and that it has been provided
by a trusted vendor. The Oracle GPG key is necessary to
cryptographically verify packages are from Oracle. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_oracle_gpgkey_installed | References: | cis-csc | 11, 2, 3, 9 | cobit5 | APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02 | disa | CCI-001749 | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4 | isa-62443-2013 | SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6 | iso27001-2013 | A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4 | nist | CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), CM-11(a), CM-11(b) | nist-csf | PR.DS-6, PR.DS-8, PR.IP-1 | pcidss | Req-6.2 | stigid | OL08-00-010019 | cis | 1.2.2 | anssi | R59 | stigref | SV-256978r1015073_rule |
| |
|
Rule
Ensure Software Patches Installed
[ref] |
If the system is joined to the ULN
or a yum server, run the following command to install updates:
$ sudo yum update
If the system is not configured to use one of these sources, updates (in the form of RPM packages)
can be manually downloaded from the ULN and installed using rpm .
NOTE: U.S. Defense systems are required to be patched within 30 days or sooner as local policy
dictates. Warning:
The OVAL feed of Oracle Linux 8 is not a XML file, which may not be understood by all scanners. | Rationale: | Installing software updates is a fundamental mitigation against
the exploitation of publicly-known vulnerabilities. If the most
recent security patches and updates are not installed, unauthorized
users may take advantage of weaknesses in the unpatched software. The
lack of prompt attention to patching could result in a system compromise. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_security_patches_up_to_date | References: | cis-csc | 18, 20, 4 | cjis | 5.10.4.1 | cobit5 | APO12.01, APO12.02, APO12.03, APO12.04, BAI03.10, DSS05.01, DSS05.02 | disa | CCI-000366 | isa-62443-2009 | 4.2.3, 4.2.3.12, 4.2.3.7, 4.2.3.9 | iso27001-2013 | A.12.6.1, A.14.2.3, A.16.1.3, A.18.2.2, A.18.2.3 | nist | SI-2(5), SI-2(c), CM-6(a) | nist-csf | ID.RA-1, PR.IP-12 | ospp | FMT_MOF_EXT.1 | pcidss | Req-6.2 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-010010 | anssi | R61 | pcidss4 | 6.3.3, 6.3 | stigref | SV-248523r991589_rule |
| |
|
Group
Account and Access Control
Group contains 12 groups and 29 rules |
[ref]
In traditional Unix security, if an attacker gains
shell access to a certain login account, they can perform any action
or access any file to which that account has access. Therefore,
making it more difficult for unauthorized people to gain shell
access to accounts, particularly to privileged accounts, is a
necessary part of securing a system. This section introduces
mechanisms for restricting access to accounts under
Oracle Linux 8. |
Group
Protect Accounts by Configuring PAM
Group contains 4 groups and 14 rules |
[ref]
PAM, or Pluggable Authentication Modules, is a system
which implements modular authentication for Linux programs. PAM provides
a flexible and configurable architecture for authentication, and it should be configured
to minimize exposure to unnecessary risk. This section contains
guidance on how to accomplish that.
PAM is implemented as a set of shared objects which are
loaded and invoked whenever an application wishes to authenticate a
user. Typically, the application must be running as root in order
to take advantage of PAM, because PAM's modules often need to be able
to access sensitive stores of account information, such as /etc/shadow.
Traditional privileged network listeners
(e.g. sshd) or SUID programs (e.g. sudo) already meet this
requirement. An SUID root application, userhelper, is provided so
that programs which are not SUID or privileged themselves can still
take advantage of PAM.
PAM looks in the directory /etc/pam.d for
application-specific configuration information. For instance, if
the program login attempts to authenticate a user, then PAM's
libraries follow the instructions in the file /etc/pam.d/login
to determine what actions should be taken.
One very important file in /etc/pam.d is
/etc/pam.d/system-auth . This file, which is included by
many other PAM configuration files, defines 'default' system authentication
measures. Modifying this file is a good way to make far-reaching
authentication changes, for instance when implementing a
centralized authentication service. Warning:
Be careful when making changes to PAM's configuration files.
The syntax for these files is complex, and modifications can
have unexpected consequences. The default configurations shipped
with applications should be sufficient for most users. |
Group
Set Lockouts for Failed Password Attempts
Group contains 4 rules |
[ref]
The pam_faillock PAM module provides the capability to
lock out user accounts after a number of failed login attempts. Its
documentation is available in
/usr/share/doc/pam-VERSION/txts/README.pam_faillock .
Warning:
Locking out user accounts presents the
risk of a denial-of-service attack. The lockout policy
must weigh whether the risk of such a
denial-of-service attack outweighs the benefits of thwarting
password guessing attacks. |
Rule
Lock Accounts After Failed Password Attempts
[ref] | This rule configures the system to lock out accounts after a number of incorrect login attempts
using pam_faillock.so .
pam_faillock.so module requires multiple entries in pam files. These entries must be carefully
defined to work as expected.
Ensure that the file /etc/security/faillock.conf contains the following entry:
deny = <count>
Where count should be less than or equal to
3 and greater than 0.
In order to avoid errors when manually editing these files, it is
recommended to use the appropriate tools, such as authselect or authconfig ,
depending on the OS version. Warning:
If the system relies on authselect tool to manage PAM settings, the remediation
will also use authselect tool. However, if any manual modification was made in
PAM files, the authselect integrity check will fail and the remediation will be
aborted in order to preserve intentional changes. In this case, an informative message will
be shown in the remediation report.
If the system supports the /etc/security/faillock.conf file, the pam_faillock
parameters should be defined in faillock.conf file. | Rationale: | By limiting the number of failed logon attempts, the risk of unauthorized system access via
user password guessing, also known as brute-forcing, is reduced. Limits are imposed by locking
the account. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_faillock_deny | References: | cis-csc | 1, 12, 15, 16 | cjis | 5.5.3 | cobit5 | DSS05.04, DSS05.10, DSS06.10 | cui | 3.1.8 | disa | CCI-000044, CCI-002238 | isa-62443-2009 | 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3 | nist | CM-6(a), AC-7(a) | nist-csf | PR.AC-7 | ospp | FIA_AFL.1 | pcidss | Req-8.1.6 | os-srg | SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005 | stigid | OL08-00-020010, OL08-00-020011 | anssi | R31 | pcidss4 | 8.3.4, 8.3 | stigref | SV-248652r958388_rule, SV-248653r958388_rule |
| |
|
Rule
Configure the root Account for Failed Password Attempts
[ref] | This rule configures the system to lock out the root account after a number of
incorrect login attempts using pam_faillock.so .
pam_faillock.so module requires multiple entries in pam files. These entries must be carefully
defined to work as expected. In order to avoid errors when manually editing these files, it is
recommended to use the appropriate tools, such as authselect or authconfig ,
depending on the OS version. Warning:
If the system relies on authselect tool to manage PAM settings, the remediation
will also use authselect tool. However, if any manual modification was made in
PAM files, the authselect integrity check will fail and the remediation will be
aborted in order to preserve intentional changes. In this case, an informative message will
be shown in the remediation report.
If the system supports the /etc/security/faillock.conf file, the pam_faillock
parameters should be defined in faillock.conf file. | Rationale: | By limiting the number of failed logon attempts, the risk of unauthorized system access via
user password guessing, also known as brute-forcing, is reduced. Limits are imposed by locking
the account. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_faillock_deny_root | References: | cis-csc | 1, 12, 15, 16 | cobit5 | DSS05.04, DSS05.10, DSS06.10 | disa | CCI-000044, CCI-002238 | isa-62443-2009 | 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3 | nist | CM-6(a), AC-7(b), IA-5(c) | nist-csf | PR.AC-7 | os-srg | SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005 | stigid | OL08-00-020022, OL08-00-020023 | anssi | R31 | stigref | SV-248664r958388_rule, SV-248665r958388_rule |
| |
|
Rule
Set Interval For Counting Failed Password Attempts
[ref] | Utilizing pam_faillock.so , the fail_interval directive configures the system
to lock out an account after a number of incorrect login attempts within a specified time
period.
Ensure that the file /etc/security/faillock.conf contains the following entry:
fail_interval = <interval-in-seconds> where interval-in-seconds is 900 or greater.
In order to avoid errors when manually editing these files, it is
recommended to use the appropriate tools, such as authselect or authconfig ,
depending on the OS version. Warning:
If the system relies on authselect tool to manage PAM settings, the remediation
will also use authselect tool. However, if any manual modification was made in
PAM files, the authselect integrity check will fail and the remediation will be
aborted in order to preserve intentional changes. In this case, an informative message will
be shown in the remediation report.
If the system supports the /etc/security/faillock.conf file, the pam_faillock
parameters should be defined in faillock.conf file. | Rationale: | By limiting the number of failed logon attempts the risk of unauthorized system
access via user password guessing, otherwise known as brute-forcing, is reduced.
Limits are imposed by locking the account. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_faillock_interval | References: | cis-csc | 1, 12, 15, 16 | cobit5 | DSS05.04, DSS05.10, DSS06.10 | disa | CCI-000044, CCI-002238 | isa-62443-2009 | 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3 | nist | CM-6(a), AC-7(a) | nist-csf | PR.AC-7 | ospp | FIA_AFL.1 | os-srg | SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005 | stigid | OL08-00-020012, OL08-00-020013 | anssi | R31 | stigref | SV-248654r958388_rule, SV-248655r958388_rule |
| |
|
Rule
Set Lockout Time for Failed Password Attempts
[ref] | This rule configures the system to lock out accounts during a specified time period after a
number of incorrect login attempts using pam_faillock.so .
Ensure that the file /etc/security/faillock.conf contains the following entry:
unlock_time=<interval-in-seconds> where
interval-in-seconds is 0 or greater.
pam_faillock.so module requires multiple entries in pam files. These entries must be carefully
defined to work as expected. In order to avoid any errors when manually editing these files,
it is recommended to use the appropriate tools, such as authselect or authconfig ,
depending on the OS version.
If unlock_time is set to 0 , manual intervention by an administrator is required
to unlock a user. This should be done using the faillock tool. Warning:
If the system supports the new /etc/security/faillock.conf file but the
pam_faillock.so parameters are defined directly in /etc/pam.d/system-auth and
/etc/pam.d/password-auth , the remediation will migrate the unlock_time parameter
to /etc/security/faillock.conf to ensure compatibility with authselect tool.
The parameters deny and fail_interval , if used, also have to be migrated
by their respective remediation. Warning:
If the system relies on authselect tool to manage PAM settings, the remediation
will also use authselect tool. However, if any manual modification was made in
PAM files, the authselect integrity check will fail and the remediation will be
aborted in order to preserve intentional changes. In this case, an informative message will
be shown in the remediation report.
If the system supports the /etc/security/faillock.conf file, the pam_faillock
parameters should be defined in faillock.conf file. | Rationale: | By limiting the number of failed logon attempts the risk of unauthorized system
access via user password guessing, otherwise known as brute-forcing, is reduced.
Limits are imposed by locking the account. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_faillock_unlock_time | References: | cis-csc | 1, 12, 15, 16 | cjis | 5.5.3 | cobit5 | DSS05.04, DSS05.10, DSS06.10 | cui | 3.1.8 | disa | CCI-000044, CCI-002238 | isa-62443-2009 | 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3 | nist | CM-6(a), AC-7(b) | nist-csf | PR.AC-7 | ospp | FIA_AFL.1 | pcidss | Req-8.1.7 | os-srg | SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005 | stigid | OL08-00-020014, OL08-00-020015 | anssi | R31 | pcidss4 | 8.3.4, 8.3 | stigref | SV-248656r958388_rule, SV-248657r958388_rule |
| |
|
Group
Set Password Quality Requirements
Group contains 1 group and 6 rules |
[ref]
The default pam_pwquality PAM module provides strength
checking for passwords. It performs a number of checks, such as
making sure passwords are not similar to dictionary words, are of
at least a certain length, are not the previous password reversed,
and are not simply a change of case from the previous password. It
can also require passwords to be in certain character classes. The
pam_pwquality module is the preferred way of configuring
password requirements.
The man pages pam_pwquality(8)
provide information on the capabilities and configuration of
each. |
Group
Set Password Quality Requirements with pam_pwquality
Group contains 6 rules |
[ref]
The pam_pwquality PAM module can be configured to meet
requirements for a variety of policies.
For example, to configure pam_pwquality to require at least one uppercase
character, lowercase character, digit, and other (special)
character, make sure that pam_pwquality exists in /etc/pam.d/system-auth :
password requisite pam_pwquality.so try_first_pass local_users_only retry=3 authtok_type=
If no such line exists, add one as the first line of the password section in /etc/pam.d/system-auth .
Next, modify the settings in /etc/security/pwquality.conf to match the following:
difok = 4
minlen = 14
dcredit = -1
ucredit = -1
lcredit = -1
ocredit = -1
maxrepeat = 3
The arguments can be modified to ensure compliance with
your organization's security policy. Discussion of each parameter follows. |
Rule
Ensure PAM Enforces Password Requirements - Minimum Digit Characters
[ref] | The pam_pwquality module's dcredit parameter controls requirements for
usage of digits in a password. When set to a negative number, any password will be required to
contain that many digits. When set to a positive number, pam_pwquality will grant +1 additional
length credit for each digit. Modify the dcredit setting in
/etc/security/pwquality.conf to require the use of a digit in passwords. | Rationale: | Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes
to crack a password. The more complex the password, the greater the number of
possible combinations that need to be tested before the password is compromised.
Requiring digits makes password guessing attacks more difficult by ensuring a larger
search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_dcredit | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | ospp | FMT_SMF_EXT.1 | pcidss | Req-8.2.3 | os-srg | SRG-OS-000071-GPOS-00039 | stigid | OL08-00-020130 | anssi | R31 | pcidss4 | 8.3.6, 8.3 | stigref | SV-248689r1015049_rule |
| |
|
Rule
Ensure PAM Enforces Password Requirements - Minimum Lowercase Characters
[ref] | The pam_pwquality module's lcredit parameter controls requirements for
usage of lowercase letters in a password. When set to a negative number, any password will be required to
contain that many lowercase characters. When set to a positive number, pam_pwquality will grant +1 additional
length credit for each lowercase character. Modify the lcredit setting in
/etc/security/pwquality.conf to require the use of a lowercase character in passwords. | Rationale: | Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes
to crack a password. The more complex the password, the greater the number of
possble combinations that need to be tested before the password is compromised.
Requiring a minimum number of lowercase characters makes password guessing attacks
more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_lcredit | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | ospp | FMT_SMF_EXT.1 | pcidss | Req-8.2.3 | os-srg | SRG-OS-000070-GPOS-00038 | stigid | OL08-00-020120 | anssi | R31 | pcidss4 | 8.3.6, 8.3 | stigref | SV-248688r1015048_rule |
| |
|
Rule
Ensure PAM Enforces Password Requirements - Minimum Different Categories
[ref] | The pam_pwquality module's minclass parameter controls
requirements for usage of different character classes, or types, of character
that must exist in a password before it is considered valid. For example,
setting this value to three (3) requires that any password must have characters
from at least three different categories in order to be approved. The default
value is zero (0), meaning there are no required classes. There are four
categories available:
* Upper-case characters
* Lower-case characters
* Digits
* Special characters (for example, punctuation)
Modify the minclass setting in /etc/security/pwquality.conf entry
to require 3
differing categories of characters when changing passwords. | Rationale: | Use of a complex password helps to increase the time and resources required to compromise the password.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts
at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The
more complex the password, the greater the number of possible combinations that need to be tested before
the password is compromised.
Requiring a minimum number of character categories makes password guessing attacks more difficult
by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_minclass | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | os-srg | SRG-OS-000072-GPOS-00040 | stigid | OL08-00-020160 | anssi | R68 | stigref | SV-248692r1015052_rule |
| |
|
Rule
Ensure PAM Enforces Password Requirements - Minimum Length
[ref] | The pam_pwquality module's minlen parameter controls requirements for
minimum characters required in a password. Add minlen=20
after pam_pwquality to set minimum password length requirements. | Rationale: | The shorter the password, the lower the number of possible combinations
that need to be tested before the password is compromised.
Password complexity, or strength, is a measure of the effectiveness of a
password in resisting attempts at guessing and brute-force attacks.
Password length is one factor of several that helps to determine strength
and how long it takes to crack a password. Use of more characters in a password
helps to exponentially increase the time and/or resources required to
compromise the password. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_minlen | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.1.1 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | ospp | FMT_SMF_EXT.1 | pcidss | Req-8.2.3 | os-srg | SRG-OS-000078-GPOS-00046 | stigid | OL08-00-020230 | anssi | R31, R68 | pcidss4 | 8.3.6, 8.3 | stigref | SV-248699r1015058_rule |
| |
|
Rule
Ensure PAM Enforces Password Requirements - Minimum Special Characters
[ref] | The pam_pwquality module's ocredit= parameter controls requirements for
usage of special (or "other") characters in a password. When set to a negative number,
any password will be required to contain that many special characters.
When set to a positive number, pam_pwquality will grant +1
additional length credit for each special character. Modify the ocredit setting
in /etc/security/pwquality.conf to equal -1
to require use of a special character in passwords. | Rationale: | Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes
to crack a password. The more complex the password, the greater the number of
possible combinations that need to be tested before the password is compromised.
Requiring a minimum number of special characters makes password guessing attacks
more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_ocredit | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | ospp | FMT_SMF_EXT.1 | os-srg | SRG-OS-000266-GPOS-00101 | stigid | OL08-00-020280 | anssi | R31 | stigref | SV-248709r1015063_rule |
| |
|
Rule
Ensure PAM Enforces Password Requirements - Minimum Uppercase Characters
[ref] | The pam_pwquality module's ucredit= parameter controls requirements for
usage of uppercase letters in a password. When set to a negative number, any password will be required to
contain that many uppercase characters. When set to a positive number, pam_pwquality will grant +1 additional
length credit for each uppercase character. Modify the ucredit setting in
/etc/security/pwquality.conf to require the use of an uppercase character in passwords. | Rationale: | Use of a complex password helps to increase the time and resources required to compromise the password.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts
at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more
complex the password, the greater the number of possible combinations that need to be tested before
the password is compromised. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_ucredit | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | ospp | FMT_SMF_EXT.1 | pcidss | Req-8.2.3 | os-srg | SRG-OS-000069-GPOS-00037, SRG-OS-000070-GPOS-00038 | stigid | OL08-00-020110 | anssi | R31 | stigref | SV-248687r1015047_rule |
| |
|
Group
Set Password Hashing Algorithm
Group contains 4 rules |
[ref]
The system's default algorithm for storing password hashes in
/etc/shadow is SHA-512. This can be configured in several
locations. |
Rule
Set Password Hashing Algorithm in /etc/libuser.conf
[ref] | In /etc/libuser.conf , add or correct the following line in its [defaults]
section to ensure the system will use the sha512
algorithm for password hashing:
crypt_style = sha512
| Rationale: | Passwords need to be protected at all times, and encryption is the standard method for
protecting passwords. If passwords are not encrypted, they can be plainly read
(i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm
are no more protected than if they are kept in plain text.
This setting ensures user and group account administration utilities are configured to store
only encrypted representations of passwords. Additionally, the crypt_style
configuration option in /etc/libuser.conf ensures the use of a strong hashing
algorithm that makes password cracking attacks more difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_libuserconf | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.2 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.13.11 | disa | CCI-004062 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0418, 1055, 1402 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(c), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | pcidss | Req-8.2.1 | os-srg | SRG-OS-000073-GPOS-00041 | pcidss4 | 8.3.2, 8.3 |
| |
|
Rule
Set Password Hashing Algorithm in /etc/login.defs
[ref] | In /etc/login.defs , add or update the following line to ensure the system will use
SHA512 as the hashing algorithm:
ENCRYPT_METHOD SHA512
| Rationale: | Passwords need to be protected at all times, and encryption is the standard method for
protecting passwords. If passwords are not encrypted, they can be plainly read
(i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm
are no more protected than if they are kept in plain text.
Using a stronger hashing algorithm makes password cracking attacks more difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_logindefs | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.2 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.13.11 | disa | CCI-004062 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0418, 1055, 1402 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(c), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | pcidss | Req-8.2.1 | os-srg | SRG-OS-000073-GPOS-00041 | stigid | OL08-00-010110 | pcidss4 | 8.3.2, 8.3 | stigref | SV-248533r1015028_rule |
| |
|
Rule
Set PAM''s Password Hashing Algorithm - password-auth
[ref] | The PAM system service can be configured to only store encrypted representations of passwords.
In /etc/pam.d/password-auth , the password section of the file controls which
PAM modules to execute during a password change.
Set the pam_unix.so module in the password section to include the option
sha512 and no other hashing
algorithms as shown below:
password sufficient pam_unix.so sha512
other arguments...
This will help ensure that new passwords for local users will be stored using the
sha512 algorithm. Warning:
The hashing algorithms to be used with pam_unix.so are defined with independent module
options. There are at least 7 possible algorithms and likely more algorithms will be
introduced along the time. Due the the number of options and its possible combinations,
the use of multiple hashing algorithm options may bring unexpected behaviors to the
system. For this reason the check will pass only when one hashing algorithm option is
defined and is aligned to the "var_password_hashing_algorithm_pam" variable. The
remediation will ensure the correct option and remove any other extra hashing algorithm
option. | Rationale: | Passwords need to be protected at all times, and encryption is the standard method for
protecting passwords. If passwords are not encrypted, they can be plainly read
(i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm
are no more protected than if they are kept in plain text.
This setting ensures user and group account administration utilities are configured to store
only encrypted representations of passwords. Additionally, the crypt_style
configuration option in /etc/libuser.conf ensures the use of a strong hashing
algorithm that makes password cracking attacks more difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_passwordauth | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.2 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.13.11 | disa | CCI-004062 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0418, 1055, 1402 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(c), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | pcidss | Req-8.2.1 | os-srg | SRG-OS-000073-GPOS-00041, SRG-OS-000120-GPOS-00061 | stigid | OL08-00-010160 | stigref | SV-248544r971535_rule |
| |
|
Rule
Set PAM''s Password Hashing Algorithm
[ref] | The PAM system service can be configured to only store encrypted representations of passwords.
In "/etc/pam.d/system-auth", the password section of the file controls which
PAM modules to execute during a password change.
Set the pam_unix.so module in the password section to include the option
sha512 and no other hashing
algorithms as shown below:
password sufficient pam_unix.so sha512
other arguments...
This will help ensure that new passwords for local users will be stored using the
sha512 algorithm. Warning:
The hashing algorithms to be used with pam_unix.so are defined with independent module
options. There are at least 7 possible algorithms and likely more algorithms will be
introduced along the time. Due the the number of options and its possible combinations,
the use of multiple hashing algorithm options may bring unexpected behaviors to the
system. For this reason the check will pass only when one hashing algorithm option is
defined and is aligned to the "var_password_hashing_algorithm_pam" variable. The
remediation will ensure the correct option and remove any other extra hashing algorithm
option. | Rationale: | Passwords need to be protected at all times, and encryption is the standard method for
protecting passwords. If passwords are not encrypted, they can be plainly read
(i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm
are no more protected than if they are kept in plain text.
This setting ensures user and group account administration utilities are configured to store
only encrypted representations of passwords. Additionally, the crypt_style
configuration option in /etc/libuser.conf ensures the use of a strong hashing
algorithm that makes password cracking attacks more difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_systemauth | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.2 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.13.11 | disa | CCI-000196, CCI-000803, CCI-004062 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0418, 1055, 1402 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(c), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | pcidss | Req-8.2.1 | os-srg | SRG-OS-000073-GPOS-00041, SRG-OS-000120-GPOS-00061 | stigid | OL08-00-010159 | anssi | R68 | pcidss4 | 8.3.2, 8.3 | stigref | SV-248543r971535_rule |
| |
|
Group
Protect Physical Console Access
Group contains 2 groups and 7 rules |
[ref]
It is impossible to fully protect a system from an
attacker with physical access, so securing the space in which the
system is located should be considered a necessary step. However,
there are some steps which, if taken, make it more difficult for an
attacker to quickly or undetectably modify a system from its
console. |
Group
Configure Screen Locking
Group contains 1 group and 5 rules |
[ref]
When a user must temporarily leave an account
logged-in, screen locking should be employed to prevent passersby
from abusing the account. User education and training is
particularly important for screen locking to be effective, and policies
can be implemented to reinforce this.
Automatic screen locking is only meant as a safeguard for
those cases where a user forgot to lock the screen. |
Group
Hardware Tokens for Authentication
Group contains 5 rules |
[ref]
The use of hardware tokens such as smart cards for system login
provides stronger, two-factor authentication than using a username and password.
In Oracle Linux 8 servers, hardware token login
is not enabled by default and must be enabled in the system settings. |
Rule
Install the opensc Package For Multifactor Authentication
[ref] |
The opensc package can be installed with the following command:
$ sudo yum install opensc
| Rationale: | Using an authentication device, such as a CAC or token that is separate from
the information system, ensures that even if the information system is
compromised, that compromise will not affect credentials stored on the
authentication device.
Multifactor solutions that require devices separate from
information systems gaining access include, for example, hardware tokens
providing time-based or challenge-response authenticators and smart cards such
as the U.S. Government Personal Identity Verification card and the DoD Common
Access Card. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_opensc_installed | References: | disa | CCI-001953, CCI-004046 | ism | 1382, 1384, 1386 | nist | CM-6(a) | os-srg | SRG-OS-000375-GPOS-00160, SRG-OS-000376-GPOS-00161 | stigid | OL08-00-010410 | stigref | SV-248588r958816_rule |
| |
|
Rule
Install the pcsc-lite-ccid package
[ref] | The pcsc-lite-ccid package can be installed with the following command:
$ sudo yum install pcsc-lite-ccid
| Rationale: | The pcsc-lite-ccid package must be installed if it is to be available for
multifactor authentication using smartcards. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_pcsc-lite-ccid_installed | References: | | |
|
Rule
Install the pcsc-lite package
[ref] | The pcsc-lite package can be installed with the following command:
$ sudo yum install pcsc-lite
| Rationale: | The pcsc-lite package must be installed if it is to be available for
multifactor authentication using smartcards. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_pcsc-lite_installed | References: | | |
|
Rule
Enable the pcscd Service
[ref] |
The pcscd service can be enabled with the following command:
$ sudo systemctl enable pcscd.service
| Rationale: | Using an authentication device, such as a CAC or token that is separate from
the information system, ensures that even if the information system is
compromised, that compromise will not affect credentials stored on the
authentication device.
Multifactor solutions that require devices separate from
information systems gaining access include, for example, hardware tokens
providing time-based or challenge-response authenticators and smart cards such
as the U.S. Government Personal Identity Verification card and the DoD Common
Access Card. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_pcscd_enabled | References: | disa | CCI-004046 | ism | 1382, 1384, 1386 | nist | IA-2(1), IA-2(2), IA-2(3), IA-2(4), IA-2(6), IA-2(7), IA-2(11), CM-6(a) | pcidss | Req-8.3 | os-srg | SRG-OS-000375-GPOS-00160 |
| |
|
Rule
Configure opensc Smart Card Drivers
[ref] | The OpenSC smart card tool can auto-detect smart card drivers; however,
setting the smart card drivers in use by your organization helps to prevent
users from using unauthorized smart cards. The default smart card driver for this
profile is cac .
To configure the OpenSC driver, edit the /etc/opensc.conf
and add the following line into the file in the app default block,
so it will look like:
app default {
...
card_drivers = cac;
}
| Rationale: | Smart card login provides two-factor authentication stronger than
that provided by a username and password combination. Smart cards leverage PKI
(public key infrastructure) in order to provide and verify credentials.
Configuring the smart card driver in use by your organization helps to prevent
users from using unauthorized smart cards. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_configure_opensc_card_drivers | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-001941, CCI-004045, CCI-000765, CCI-000766, CCI-000764 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 1382, 1384, 1386 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-2(1), IA-2(2), IA-2(3), IA-2(4), IA-2(6), IA-2(7), IA-2(11), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | pcidss | Req-8.3 | os-srg | SRG-OS-000104-GPOS-00051, SRG-OS-000106-GPOS-00053, SRG-OS-000107-GPOS-00054, SRG-OS-000109-GPOS-00056, SRG-OS-000108-GPOS-00055, SRG-OS-000108-GPOS-00057, SRG-OS-000108-GPOS-00058 |
| |
|
Rule
Require Authentication for Emergency Systemd Target
[ref] | Emergency mode is intended as a system recovery
method, providing a single user root access to the system
during a failed boot sequence.
By default, Emergency mode is protected by requiring a password and is set
in /usr/lib/systemd/system/emergency.service . | Rationale: | This prevents attackers with physical access from trivially bypassing security
on the machine and gaining root access. Such accesses are further prevented
by configuring the bootloader password. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_require_emergency_target_auth | References: | cis-csc | 1, 11, 12, 14, 15, 16, 18, 3, 5 | cobit5 | DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.06, DSS06.10 | cui | 3.1.1, 3.4.5 | disa | CCI-000213 | hipaa | 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii) | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nist | IA-2, AC-3, CM-6(a) | nist-csf | PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.PT-3 | os-srg | SRG-OS-000080-GPOS-00048 | stigid | OL08-00-010152 | stigref | SV-248542r958472_rule |
| |
|
Rule
Require Authentication for Single User Mode
[ref] | Single-user mode is intended as a system recovery
method, providing a single user root access to the system by
providing a boot option at startup.
By default, single-user mode is protected by requiring a password and is set
in /usr/lib/systemd/system/rescue.service . | Rationale: | This prevents attackers with physical access from trivially bypassing security
on the machine and gaining root access. Such accesses are further prevented
by configuring the bootloader password. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_require_singleuser_auth | References: | cis-csc | 1, 11, 12, 14, 15, 16, 18, 3, 5 | cobit5 | DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.06, DSS06.10 | cui | 3.1.1, 3.4.5 | disa | CCI-000213 | hipaa | 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii) | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3 | nist | IA-2, AC-3, CM-6(a) | nist-csf | PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.PT-3 | ospp | FIA_UAU.1 | os-srg | SRG-OS-000080-GPOS-00048 | stigid | OL08-00-010151 | stigref | SV-248541r958472_rule |
| |
|
Group
Protect Accounts by Restricting Password-Based Login
Group contains 3 groups and 7 rules |
[ref]
Conventionally, Unix shell accounts are accessed by
providing a username and password to a login program, which tests
these values for correctness using the /etc/passwd and
/etc/shadow files. Password-based login is vulnerable to
guessing of weak passwords, and to sniffing and man-in-the-middle
attacks against passwords entered over a network or at an insecure
console. Therefore, mechanisms for accessing accounts by entering
usernames and passwords should be restricted to those which are
operationally necessary. |
Group
Set Password Expiration Parameters
Group contains 4 rules |
[ref]
The file /etc/login.defs controls several
password-related settings. Programs such as passwd ,
su , and
login consult /etc/login.defs to determine
behavior with regard to password aging, expiration warnings,
and length. See the man page login.defs(5) for more information.
Users should be forced to change their passwords, in order to
decrease the utility of compromised passwords. However, the need to
change passwords often should be balanced against the risk that
users will reuse or write down passwords if forced to change them
too often. Forcing password changes every 90-360 days, depending on
the environment, is recommended. Set the appropriate value as
PASS_MAX_DAYS and apply it to existing accounts with the
-M flag.
The PASS_MIN_DAYS ( -m ) setting prevents password
changes for 7 days after the first change, to discourage password
cycling. If you use this setting, train users to contact an administrator
for an emergency password change in case a new password becomes
compromised. The PASS_WARN_AGE ( -W ) setting gives
users 7 days of warnings at login time that their passwords are about to expire.
For example, for each existing human user USER, expiration parameters
could be adjusted to a 180 day maximum password age, 7 day minimum password
age, and 7 day warning period with the following command:
$ sudo chage -M 180 -m 7 -W 7 USER
|
Rule
Set Password Maximum Age
[ref] | To specify password maximum age for new accounts,
edit the file /etc/login.defs
and add or correct the following line:
PASS_MAX_DAYS 60
A value of 180 days is sufficient for many environments.
The DoD requirement is 60.
The profile requirement is 60 . | Rationale: | Any password, no matter how complex, can eventually be cracked. Therefore, passwords
need to be changed periodically. If the operating system does not limit the lifetime
of passwords and force users to change their passwords, there is the risk that the
operating system passwords could be compromised.
Setting the password maximum age ensures users are required to
periodically change their passwords. Requiring shorter password lifetimes
increases the risk of users writing down the password in a convenient
location subject to physical compromise. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_maximum_age_login_defs | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.1 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.5.6 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0418, 1055, 1402 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(f), IA-5(1)(d), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | pcidss | Req-8.2.4 | os-srg | SRG-OS-000076-GPOS-00044 | stigid | OL08-00-020200 | pcidss4 | 8.3.9, 8.3 | stigref | SV-248696r1015056_rule |
| |
|
Rule
Set Password Minimum Age
[ref] | To specify password minimum age for new accounts,
edit the file /etc/login.defs
and add or correct the following line:
PASS_MIN_DAYS 1
A value of 1 day is considered sufficient for many
environments. The DoD requirement is 1.
The profile requirement is 1 . | Rationale: | Enforcing a minimum password lifetime helps to prevent repeated password
changes to defeat the password reuse or history enforcement requirement. If
users are allowed to immediately and continually change their password,
then the password could be repeatedly changed in a short period of time to
defeat the organization's policy regarding password reuse.
Setting the minimum password age protects against users cycling back to a
favorite password after satisfying the password reuse requirement. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_minimum_age_login_defs | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.1.1 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.5.8 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0418, 1055, 1402 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(f), IA-5(1)(d), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | os-srg | SRG-OS-000075-GPOS-00043 | stigid | OL08-00-020190 | stigref | SV-248695r1015055_rule |
| |
|
Rule
Set Password Minimum Length in login.defs
[ref] | To specify password length requirements for new accounts, edit the file
/etc/login.defs and add or correct the following line:
PASS_MIN_LEN 20
The DoD requirement is 15 .
The FISMA requirement is 12 .
The profile requirement is
20 .
If a program consults /etc/login.defs and also another PAM module
(such as pam_pwquality ) during a password change operation, then
the most restrictive must be satisfied. See PAM section for more
information about enforcing password quality requirements. | Rationale: | Requiring a minimum password length makes password
cracking attacks more difficult by ensuring a larger
search space. However, any security benefit from an onerous requirement
must be carefully weighed against usability problems, support costs, or counterproductive
behavior that may result. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_minlen_login_defs | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.1 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.5.7 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(f), IA-5(1)(a), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | os-srg | SRG-OS-000078-GPOS-00046 | stigid | OL08-00-020231 | anssi | R31 | stigref | SV-248700r1015059_rule |
| |
|
Rule
Set Password Warning Age
[ref] | To specify how many days prior to password
expiration that a warning will be issued to users,
edit the file /etc/login.defs and add or correct
the following line:
PASS_WARN_AGE 7
The DoD requirement is 7.
The profile requirement is 7 . | Rationale: | Setting the password warning age enables users to
make the change at a practical time. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_warn_age_login_defs | References: | cis-csc | 1, 12, 13, 14, 15, 16, 18, 3, 5, 7, 8 | cobit5 | DSS01.03, DSS03.05, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.5.8 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 6.2 | ism | 0418, 1055, 1402 | iso27001-2013 | A.12.4.1, A.12.4.3, A.18.1.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nist | IA-5(f), IA-5(1)(d), CM-6(a) | nist-csf | DE.CM-1, DE.CM-3, PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7 | pcidss | Req-8.2.4 | pcidss4 | 8.3.9, 8.3 |
| |
|
Group
Verify Proper Storage and Existence of Password
Hashes
Group contains 1 rule |
[ref]
By default, password hashes for local accounts are stored
in the second field (colon-separated) in
/etc/shadow . This file should be readable only by
processes running with root credentials, preventing users from
casually accessing others' password hashes and attempting
to crack them.
However, it remains possible to misconfigure the system
and store password hashes
in world-readable files such as /etc/passwd , or
to even store passwords themselves in plaintext on the system.
Using system-provided tools for password change/creation
should allow administrators to avoid such misconfiguration. |
Rule
Prevent Login to Accounts With Empty Password
[ref] | If an account is configured for password authentication
but does not have an assigned password, it may be possible to log
into the account without authentication. Remove any instances of the
nullok in
/etc/pam.d/system-auth and
/etc/pam.d/password-auth
to prevent logins with empty passwords. Warning:
If the system relies on authselect tool to manage PAM settings, the remediation
will also use authselect tool. However, if any manual modification was made in
PAM files, the authselect integrity check will fail and the remediation will be
aborted in order to preserve intentional changes. In this case, an informative message will
be shown in the remediation report.
Note that this rule is not applicable for systems running within a
container. Having user with empty password within a container is not
considered a risk, because it should not be possible to directly login into
a container anyway. | Rationale: | If an account has an empty password, anyone could log in and
run commands with the privileges of that account. Accounts with
empty passwords should never be used in operational environments. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_no_empty_passwords | References: | cis-csc | 1, 12, 13, 14, 15, 16, 18, 3, 5 | cjis | 5.5.2 | cobit5 | APO01.06, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.02, DSS06.03, DSS06.10 | cui | 3.1.1, 3.1.5 | disa | CCI-000366 | hipaa | 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii) | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.18.1.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nist | IA-5(1)(a), IA-5(c), CM-6(a) | nist-csf | PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.DS-5 | ospp | FIA_UAU.1 | pcidss | Req-8.2.3 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-020331, OL08-00-020332 | pcidss4 | 8.3.1, 8.3 | stigref | SV-248715r991589_rule, SV-248716r991589_rule |
| |
|
Group
Restrict Root Logins
Group contains 2 rules |
[ref]
Direct root logins should be allowed only for emergency use.
In normal situations, the administrator should access the system
via a unique unprivileged account, and then use su or sudo to execute
privileged commands. Discouraging administrators from accessing the
root account directly ensures an audit trail in organizations with
multiple administrators. Locking down the channels through which
root can connect directly also reduces opportunities for
password-guessing against the root account. The login program
uses the file /etc/securetty to determine which interfaces
should allow root logins.
The virtual devices /dev/console
and /dev/tty* represent the system consoles (accessible via
the Ctrl-Alt-F1 through Ctrl-Alt-F6 keyboard sequences on a default
installation). The default securetty file also contains /dev/vc/* .
These are likely to be deprecated in most environments, but may be retained
for compatibility. Root should also be prohibited from connecting
via network protocols. Other sections of this document
include guidance describing how to prevent root from logging in via SSH. |
Rule
Verify Only Root Has UID 0
[ref] | If any account other than root has a UID of 0, this misconfiguration should
be investigated and the accounts other than root should be removed or have
their UID changed.
If the account is associated with system commands or applications the UID
should be changed to one greater than "0" but less than "1000."
Otherwise assign a UID greater than "1000" that has not already been
assigned. | Rationale: | An account has root authority if it has a UID of 0. Multiple accounts
with a UID of 0 afford more opportunity for potential intruders to
guess a password for a privileged account. Proper configuration of
sudo is recommended to afford multiple system administrators
access to root privileges in an accountable manner. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_no_uid_except_zero | References: | cis-csc | 1, 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.02, DSS06.03, DSS06.10 | cui | 3.1.1, 3.1.5 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.18.1.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3 | nist | IA-2, AC-6(5), IA-4(b) | nist-csf | PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.DS-5 | pcidss | Req-8.5 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-040200 | pcidss4 | 8.2.1, 8.2 | stigref | SV-248874r991589_rule |
| |
|
Rule
Ensure that System Accounts Do Not Run a Shell Upon Login
[ref] | Some accounts are not associated with a human user of the system, and exist to perform some
administrative functions. Should an attacker be able to log into these accounts, they should
not be granted access to a shell.
The login shell for each local account is stored in the last field of each line in
/etc/passwd . System accounts are those user accounts with a user ID less than
1000 . The user ID is stored in the third field. If any system account
other than root has a login shell, disable it with the command:
$ sudo usermod -s /sbin/nologin account
Warning:
Do not perform the steps in this section on the root account. Doing so might cause the
system to become inaccessible. | Rationale: | Ensuring shells are not given to system accounts upon login makes it more difficult for
attackers to make use of system accounts. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_no_shelllogin_for_systemaccounts | References: | cis-csc | 1, 12, 13, 14, 15, 16, 18, 3, 5, 7, 8 | cobit5 | DSS01.03, DSS03.05, DSS05.04, DSS05.05, DSS05.07, DSS06.03 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 6.2 | ism | 1491 | iso27001-2013 | A.12.4.1, A.12.4.3, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nist | AC-6, CM-6(a), CM-6(b), CM-6.1(iv) | nist-csf | DE.CM-1, DE.CM-3, PR.AC-1, PR.AC-4, PR.AC-6 | os-srg | SRG-OS-000480-GPOS-00227 | pcidss4 | 8.2.2, 8.2 |
| |
|
Rule
Enable authselect
[ref] | Configure user authentication setup to use the authselect tool.
If authselect profile is selected, the rule will enable the sssd profile. Warning:
If the sudo authselect select command returns an error informing that the chosen
profile cannot be selected, it is probably because PAM files have already been modified by
the administrator. If this is the case, in order to not overwrite the desired changes made
by the administrator, the current PAM settings should be investigated before forcing the
selection of the chosen authselect profile. | Rationale: | Authselect is a successor to authconfig.
It is a tool to select system authentication and identity sources from a list of supported
profiles instead of letting the administrator manually build the PAM stack.
That way, it avoids potential breakage of configuration, as it ships several tested profiles
that are well tested and supported to solve different use-cases. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_enable_authselect | References: | disa | CCI-000213 | hipaa | 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii) | nist | AC-3 | ospp | FIA_UAU.1, FIA_AFL.1 | os-srg | SRG-OS-000480-GPOS-00227 | anssi | R31 | pcidss4 | 8.3.4, 8.3 |
| |
|
Group
Configure Syslog
Group contains 3 groups and 10 rules |
[ref]
The syslog service has been the default Unix logging mechanism for
many years. It has a number of downsides, including inconsistent log format,
lack of authentication for received messages, and lack of authentication,
encryption, or reliable transport for messages sent over a network. However,
due to its long history, syslog is a de facto standard which is supported by
almost all Unix applications.
In Oracle Linux 8, rsyslog has replaced ksyslogd as the
syslog daemon of choice, and it includes some additional security features
such as reliable, connection-oriented (i.e. TCP) transmission of logs, the
option to log to database formats, and the encryption of log data en route to
a central logging server.
This section discusses how to configure rsyslog for
best effect, and how to use tools provided with the system to maintain and
monitor logs. |
Group
Ensure Proper Configuration of Log Files
Group contains 4 rules |
[ref]
The file /etc/rsyslog.conf controls where log message are written.
These are controlled by lines called rules, which consist of a
selector and an action.
These rules are often customized depending on the role of the system, the
requirements of the environment, and whatever may enable
the administrator to most effectively make use of log data.
The default rules in Oracle Linux 8 are:
*.info;mail.none;authpriv.none;cron.none /var/log/messages
authpriv.* /var/log/secure
mail.* -/var/log/maillog
cron.* /var/log/cron
*.emerg *
uucp,news.crit /var/log/spooler
local7.* /var/log/boot.log
See the man page rsyslog.conf(5) for more information.
Note that the rsyslog daemon can be configured to use a timestamp format that
some log processing programs may not understand. If this occurs,
edit the file /etc/rsyslog.conf and add or edit the following line:
$ ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat
|
Rule
Ensure cron Is Logging To Rsyslog
[ref] | Cron logging must be implemented to spot intrusions or trace
cron job status. If cron is not logging to rsyslog , it
can be implemented by adding the following to the RULES section of
/etc/rsyslog.conf :
If the legacy syntax is used:
cron.* /var/log/cron
If the modern syntax (RainerScript) is used:
cron.* action(type="omfile" file="/var/log/cron")
| Rationale: | Cron logging can be used to trace the successful or unsuccessful execution
of cron jobs. It can also be used to spot intrusions into the use of the cron
facility by unauthorized and malicious users. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_rsyslog_cron_logging | References: | cis-csc | 1, 14, 15, 16, 3, 5, 6 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS05.04, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | disa | CCI-000366 | isa-62443-2009 | 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1 | ism | 0988, 1405 | iso27001-2013 | A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.15.2.1, A.15.2.2 | nist | CM-6(a) | nist-csf | ID.SC-4, PR.PT-1 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-030010 | stigref | SV-248723r991589_rule |
| |
|
Rule
Ensure Log Files Are Owned By Appropriate Group
[ref] | The group-owner of all log files written by
rsyslog should be root .
These log files are determined by the second part of each Rule line in
/etc/rsyslog.conf and typically all appear in /var/log .
For each log file LOGFILE referenced in /etc/rsyslog.conf ,
run the following command to inspect the file's group owner:
$ ls -l LOGFILE
If the owner is not root ,
run the following command to
correct this:
$ sudo chgrp root LOGFILE
| Rationale: | The log files generated by rsyslog contain valuable information regarding system
configuration, user authentication, and other such information. Log files should be
protected from unauthorized access. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_rsyslog_files_groupownership | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | disa | CCI-001314 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | ism | 0988, 1405 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | pcidss | Req-10.5.1, Req-10.5.2 | anssi | R71 | pcidss4 | 10.3.2, 10.3 |
| |
|
Rule
Ensure Log Files Are Owned By Appropriate User
[ref] | The owner of all log files written by
rsyslog should be
root .
These log files are determined by the second part of each Rule line in
/etc/rsyslog.conf and typically all appear in /var/log .
For each log file LOGFILE referenced in /etc/rsyslog.conf ,
run the following command to inspect the file's owner:
$ ls -l LOGFILE
If the owner is not
root ,
run the following command to
correct this:
$ sudo chown root LOGFILE
| Rationale: | The log files generated by rsyslog contain valuable information regarding system
configuration, user authentication, and other such information. Log files should be
protected from unauthorized access. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_rsyslog_files_ownership | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | disa | CCI-001314 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | ism | 0988, 1405 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | pcidss | Req-10.5.1, Req-10.5.2 | anssi | R71 | pcidss4 | 10.3.2, 10.3 |
| |
|
Rule
Ensure System Log Files Have Correct Permissions
[ref] | The file permissions for all log files written by rsyslog should
be set to 640, or more restrictive. These log files are determined by the
second part of each Rule line in /etc/rsyslog.conf and typically
all appear in /var/log . For each log file LOGFILE
referenced in /etc/rsyslog.conf , run the following command to
inspect the file's permissions:
$ ls -l LOGFILE
If the permissions are not 640 or more restrictive, run the following
command to correct this:
$ sudo chmod 640 LOGFILE
" | Rationale: | Log files can contain valuable information regarding system
configuration. If the system log files are not protected unauthorized
users could change the logged data, eliminating their forensic value. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_rsyslog_files_permissions | References: | disa | CCI-001314 | ism | 0988, 1405 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-6(a), AC-6(1) | pcidss | Req-10.5.1, Req-10.5.2 | anssi | R71 | pcidss4 | 10.3.1, 10.3 |
| |
|
Group
Configure rsyslogd to Accept Remote Messages If Acting as a Log Server
Group contains 1 rule |
[ref]
By default, rsyslog does not listen over the network
for log messages. If needed, modules can be enabled to allow
the rsyslog daemon to receive messages from other systems and for the system
thus to act as a log server.
If the system is not a log server, then lines concerning these modules
should remain commented out.
|
Rule
Ensure rsyslog Does Not Accept Remote Messages Unless Acting As Log Server
[ref] | The rsyslog daemon should not accept remote messages unless the system acts as a log
server. To ensure that it is not listening on the network, ensure any of the following lines
are not found in rsyslog configuration files.
If using legacy syntax:
$ModLoad imtcp
$InputTCPServerRun port
$ModLoad imudp
$UDPServerRun port
$ModLoad imrelp
$InputRELPServerRun port
If using RainerScript syntax:
module(load="imtcp")
module(load="imudp")
input(type="imtcp" port="514")
input(type="imudp" port="514")
| Rationale: | Any process which receives messages from the network incurs some risk of receiving malicious
messages. This risk can be eliminated for rsyslog by configuring it not to listen on the
network. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_rsyslog_nolisten | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 5, 6, 8, 9 | cobit5 | APO01.06, APO11.04, APO13.01, BAI03.05, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.07, DSS06.02, MEA02.01 | disa | CCI-000366 | isa-62443-2009 | 4.2.3.4, 4.3.3.3.9, 4.3.3.4, 4.3.3.5.8, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, 4.4.3.3 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | ism | 0988, 1405 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.5.1, A.12.6.2, A.12.7.1, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | DE.AE-1, ID.AM-3, PR.AC-5, PR.DS-5, PR.IP-1, PR.PT-1, PR.PT-4 | os-srg | SRG-OS-000480-GPOS-00227 |
| |
|
Group
Rsyslog Logs Sent To Remote Host
Group contains 3 rules |
[ref]
If system logs are to be useful in detecting malicious
activities, it is necessary to send logs to a remote server. An
intruder who has compromised the root account on a system may
delete the log entries which indicate that the system was attacked
before they are seen by an administrator.
However, it is recommended that logs be stored on the local
host in addition to being sent to the loghost, especially if
rsyslog has been configured to use the UDP protocol to send
messages over a network. UDP does not guarantee reliable delivery,
and moderately busy sites will lose log messages occasionally,
especially in periods of high traffic which may be the result of an
attack. In addition, remote rsyslog messages are not
authenticated in any way by default, so it is easy for an attacker to
introduce spurious messages to the central log server. Also, some
problems cause loss of network connectivity, which will prevent the
sending of messages to the central server. For all of these reasons, it is
better to store log messages both centrally and on each host, so
that they can be correlated if necessary. |
Rule
Ensure Logs Sent To Remote Host
[ref] | To configure rsyslog to send logs to a remote log server,
open /etc/rsyslog.conf and read and understand the last section of the file,
which describes the multiple directives necessary to activate remote
logging.
Along with these other directives, the system can be configured
to forward its logs to a particular log server by
adding or correcting one of the following lines,
substituting logcollector appropriately.
The choice of protocol depends on the environment of the system;
although TCP and RELP provide more reliable message delivery,
they may not be supported in all environments.
To use UDP for log message delivery:
*.* @logcollector
To use TCP for log message delivery:
*.* @@logcollector
To use RELP for log message delivery:
*.* :omrelp:logcollector
There must be a resolvable DNS CNAME or Alias record set to " logcollector" for logs to be sent correctly to the centralized logging utility. Warning:
It is important to configure queues in case the client is sending log
messages to a remote server. If queues are not configured,
the system will stop functioning when the connection
to the remote server is not available. Please consult Rsyslog
documentation for more information about configuration of queues. The
example configuration which should go into /etc/rsyslog.conf
can look like the following lines:
$ActionQueueType LinkedList
$ActionQueueFileName queuefilename
$ActionQueueMaxDiskSpace 1g
$ActionQueueSaveOnShutdown on
$ActionResumeRetryCount -1
| Rationale: | A log server (loghost) receives syslog messages from one or more
systems. This data can be used as an additional log source in the event a
system is compromised and its local logs are suspect. Forwarding log messages
to a remote loghost also provides system administrators with a centralized
place to view the status of multiple hosts within the enterprise. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_rsyslog_remote_loghost | References: | cis-csc | 1, 13, 14, 15, 16, 2, 3, 5, 6 | cobit5 | APO11.04, APO13.01, BAI03.05, BAI04.04, DSS05.04, DSS05.07, MEA02.01 | disa | CCI-000366, CCI-001851 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(5)(ii)(B), 164.308(a)(5)(ii)(C), 164.308(a)(6)(ii), 164.308(a)(8), 164.310(d)(2)(iii), 164.312(b), 164.314(a)(2)(i)(C), 164.314(a)(2)(iii) | isa-62443-2009 | 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 7.1, SR 7.2 | ism | 0988, 1405 | iso27001-2013 | A.12.1.3, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.17.2.1 | nerc-cip | CIP-003-8 R5.2, CIP-004-6 R3.3 | nist | CM-6(a), AU-4(1), AU-9(2) | nist-csf | PR.DS-4, PR.PT-1 | os-srg | SRG-OS-000479-GPOS-00224, SRG-OS-000480-GPOS-00227, SRG-OS-000342-GPOS-00133 | stigid | OL08-00-030690 | anssi | R71 | stigref | SV-248814r958754_rule |
| |
|
Rule
Configure TLS for rsyslog remote logging
[ref] | Configure rsyslog to use Transport Layer
Security (TLS) support for logging to remote server
for the Forwarding Output Module in /etc/rsyslog.conf
using action. You can use the following command:
echo 'action(type="omfwd" protocol="tcp" Target="<remote system>" port="6514"
StreamDriver="gtls" StreamDriverMode="1" StreamDriverAuthMode="x509/name" streamdriver.CheckExtendedKeyPurpose="on")' >> /etc/rsyslog.conf
Replace the <remote system> in the above command with an IP address or a host name of the remote logging server. | Rationale: | For protection of data being logged, the connection to the
remote logging server needs to be authenticated and encrypted. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_rsyslog_remote_tls | References: | ism | 0988, 1405 | nist | AU-9(3), CM-6(a) | os-srg | SRG-OS-000480-GPOS-00227, SRG-OS-000120-GPOS-00061 | anssi | R71 |
| |
|
Rule
Configure CA certificate for rsyslog remote logging
[ref] | Configure CA certificate for rsyslog logging
to remote server using Transport Layer Security (TLS)
using correct path for the DefaultNetstreamDriverCAFile
global option in /etc/rsyslog.conf , for example with the following command:
echo 'global(DefaultNetstreamDriverCAFile="/etc/pki/tls/cert.pem")' >> /etc/rsyslog.conf
Replace the /etc/pki/tls/cert.pem in the above command with the path to the file with CA certificate generated for the purpose of remote logging. Warning:
Automatic remediation is not available as each organization has unique requirements. | Rationale: | The CA certificate needs to be set or rsyslog.service
fails to start with
error: ca certificate is not set, cannot continue
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_rsyslog_remote_tls_cacert | References: | | |
|
Rule
Ensure rsyslog is Installed
[ref] | Rsyslog is installed by default. The rsyslog package can be installed with the following command: $ sudo yum install rsyslog
| Rationale: | The rsyslog package provides the rsyslog daemon, which provides
system logging services. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_rsyslog_installed | References: | cis-csc | 1, 14, 15, 16, 3, 5, 6 | cobit5 | APO11.04, BAI03.05, DSS05.04, DSS05.07, MEA02.01 | disa | CCI-000366, CCI-000154, CCI-001851 | hipaa | 164.312(a)(2)(ii) | isa-62443-2009 | 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9 | iso27001-2013 | A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1 | nist | CM-6(a) | nist-csf | PR.PT-1 | os-srg | SRG-OS-000479-GPOS-00224, SRG-OS-000051-GPOS-00024, SRG-OS-000480-GPOS-00227 | stigid | OL08-00-030670 | stigref | SV-248812r991589_rule |
| |
|
Rule
Enable rsyslog Service
[ref] | The rsyslog service provides syslog-style logging by default on Oracle Linux 8.
The rsyslog service can be enabled with the following command:
$ sudo systemctl enable rsyslog.service
| Rationale: | The rsyslog service must be running in order to provide
logging services, which are essential to system administration. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_rsyslog_enabled | References: | cis-csc | 1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO13.01, BAI03.05, BAI04.04, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | disa | CCI-000366 | hipaa | 164.312(a)(2)(ii) | isa-62443-2009 | 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2, SR 7.1, SR 7.2 | iso27001-2013 | A.12.1.3, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2, A.17.2.1 | nist | CM-6(a), AU-4(1) | nist-csf | DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.DS-4, PR.PT-1 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-010561 | stigref | SV-248615r991589_rule |
| |
|
Group
Network Configuration and Firewalls
Group contains 5 groups and 7 rules |
[ref]
Most systems must be connected to a network of some
sort, and this brings with it the substantial risk of network
attack. This section discusses the security impact of decisions
about networking which must be made when configuring a system.
This section also discusses firewalls, network access
controls, and other network security frameworks, which allow
system-level rules to be written that can limit an attackers' ability
to connect to your system. These rules can specify that network
traffic should be allowed or denied from certain IP addresses,
hosts, and networks. The rules can also specify which of the
system's network services are available to particular hosts or
networks. |
Group
firewalld
Group contains 2 groups and 4 rules |
[ref]
The dynamic firewall daemon firewalld provides a
dynamically managed firewall with support for network “zones” to assign
a level of trust to a network and its associated connections and interfaces.
It has support for IPv4 and IPv6 firewall settings. It supports Ethernet
bridges and has a separation of runtime and permanent configuration options.
It also has an interface for services or applications to add firewall rules
directly.
A graphical configuration tool, firewall-config , is used to configure
firewalld , which in turn uses iptables tool to communicate
with Netfilter in the kernel which implements packet filtering.
The firewall service provided by firewalld is dynamic rather than
static because changes to the configuration can be made at anytime and are
immediately implemented. There is no need to save or apply the changes. No
unintended disruption of existing network connections occurs as no part of
the firewall has to be reloaded. |
Group
Inspect and Activate Default firewalld Rules
Group contains 2 rules |
[ref]
Firewalls can be used to separate networks into different zones
based on the level of trust the user has decided to place on the devices and
traffic within that network. NetworkManager informs firewalld to which
zone an interface belongs. An interface's assigned zone can be changed by
NetworkManager or via the firewall-config tool.
The zone settings in /etc/firewalld/ are a range of preset settings
which can be quickly applied to a network interface. These are the zones
provided by firewalld sorted according to the default trust level of the
zones from untrusted to trusted:
drop
Any incoming network packets are dropped, there is no
reply. Only outgoing network connections are possible. block
Any incoming network connections are rejected with an
icmp-host-prohibited message for IPv4 and icmp6-adm-prohibited
for IPv6. Only network connections initiated from within the system are
possible. public
For use in public areas. You do not trust the other
computers on the network to not harm your computer. Only selected incoming
connections are accepted. external
For use on external networks with masquerading enabled
especially for routers. You do not trust the other computers on the network to
not harm your computer. Only selected incoming connections are accepted. dmz
For computers in your demilitarized zone that are
publicly-accessible with limited access to your internal network. Only selected
incoming connections are accepted. work
For use in work areas. You mostly trust the other computers
on networks to not harm your computer. Only selected incoming connections are
accepted. home
For use in home areas. You mostly trust the other computers
on networks to not harm your computer. Only selected incoming connections are
accepted. internal
For use on internal networks. You mostly trust the
other computers on the networks to not harm your computer. Only selected
incoming connections are accepted. trusted
All network connections are accepted.
It is possible to designate one of these zones to be the default zone. When
interface connections are added to NetworkManager , they are assigned
to the default zone. On installation, the default zone in firewalld is set to
be the public zone.
To find out all the settings of a zone, for example the public zone,
enter the following command as root:
# firewall-cmd --zone=public --list-all
Example output of this command might look like the following:
# firewall-cmd --zone=public --list-all
public
interfaces:
services: mdns dhcpv6-client ssh
ports:
forward-ports:
icmp-blocks: source-quench
To view the network zones currently active, enter the following command as root:
# firewall-cmd --get-service
The following listing displays the result of this command
on common Oracle Linux 8 system:
# firewall-cmd --get-service
amanda-client bacula bacula-client dhcp dhcpv6 dhcpv6-client dns ftp
high-availability http https imaps ipp ipp-client ipsec kerberos kpasswd
ldap ldaps libvirt libvirt-tls mdns mountd ms-wbt mysql nfs ntp openvpn
pmcd pmproxy pmwebapi pmwebapis pop3s postgresql proxy-dhcp radius rpc-bind
samba samba-client smtp ssh telnet tftp tftp-client transmission-client
vnc-server wbem-https
Finally to view the network zones that will be active after the next firewalld
service reload, enter the following command as root:
# firewall-cmd --get-service --permanent
|
Rule
Install firewalld Package
[ref] | The firewalld package can be installed with the following command:
$ sudo yum install firewalld
| Rationale: | "Firewalld" provides an easy and effective way to block/limit remote access to the system via ports, services, and protocols.
Remote access services, such as those providing remote access to network devices and information systems, which lack automated control capabilities, increase risk and make remote user access management difficult at best.
Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless.
Oracle Linux 8 functionality (e.g., SSH) must be capable of taking enforcement action if the audit reveals unauthorized activity.
Automated control of remote access sessions allows organizations to ensure ongoing compliance with remote access policies by enforcing connection rules of remote access applications on a variety of information system components (e.g., servers, workstations, notebook computers, smartphones, and tablets)." | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_firewalld_installed | References: | disa | CCI-000382, CCI-000366, CCI-002314, CCI-002322 | nist | CM-6(a) | ospp | FMT_SMF_EXT.1 | os-srg | SRG-OS-000096-GPOS-00050, SRG-OS-000297-GPOS-00115, SRG-OS-000298-GPOS-00116, SRG-OS-000480-GPOS-00227, SRG-OS-000480-GPOS-00232 | stigid | OL08-00-040100 | pcidss4 | 1.2.1, 1.2 | stigref | SV-248840r958672_rule |
| |
|
Rule
Verify firewalld Enabled
[ref] |
The firewalld service can be enabled with the following command:
$ sudo systemctl enable firewalld.service
| Rationale: | Access control methods provide the ability to enhance system security posture
by restricting services and known good IP addresses and address ranges. This
prevents connections from unknown hosts and protocols. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_firewalld_enabled | References: | cis-csc | 11, 3, 9 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05 | cui | 3.1.3, 3.4.7 | disa | CCI-000382, CCI-000366, CCI-002314 | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4 | nerc-cip | CIP-003-8 R4, CIP-003-8 R5, CIP-004-6 R3 | nist | AC-4, CM-7(b), CA-3(5), SC-7(21), CM-6(a) | nist-csf | PR.IP-1 | ospp | FMT_SMF_EXT.1 | os-srg | SRG-OS-000096-GPOS-00050, SRG-OS-000297-GPOS-00115, SRG-OS-000480-GPOS-00227, SRG-OS-000480-GPOS-00231, SRG-OS-000480-GPOS-00232 | stigid | OL08-00-040101 | bsi | SYS.1.6.A5, SYS.1.6.A21 | pcidss4 | 1.2.1, 1.2 | stigref | SV-248841r958672_rule |
| |
|
Group
Strengthen the Default Ruleset
Group contains 2 rules |
[ref]
The default rules can be strengthened. The system
scripts that activate the firewall rules expect them to be defined
in configuration files under the /etc/firewalld/services
and /etc/firewalld/zones directories.
The following recommendations describe how to strengthen the
default ruleset configuration file. An alternative to editing this
configuration file is to create a shell script that makes calls to
the firewall-cmd program to load in rules under the /etc/firewalld/services
and /etc/firewalld/zones directories.
Instructions apply to both unless otherwise noted. Language and address
conventions for regular firewalld rules are used throughout this section. Warning:
The program firewall-config
allows additional services to penetrate the default firewall rules
and automatically adjusts the firewalld ruleset(s). |
Rule
Configure the Firewalld Ports
[ref] | Configure the firewalld ports to allow approved services to have access to the system.
To configure firewalld to open ports, run the following command:
firewall-cmd --permanent --add-port=port_number/tcp
To configure firewalld to allow access for pre-defined services, run the following
command:
firewall-cmd --permanent --add-service=service_name
| Rationale: | In order to prevent unauthorized connection of devices, unauthorized transfer of information,
or unauthorized tunneling (i.e., embedding of data types within data types), organizations must
disable or restrict unused or unnecessary physical and logical ports/protocols on information
systems.
Operating systems are capable of providing a wide variety of functions and services.
Some of the functions and services provided by default may not be necessary to support
essential organizational operations.
Additionally, it is sometimes convenient to provide multiple services from a single component
(e.g., VPN and IPS); however, doing so increases risk over limiting the services provided by
one component.
To support the requirements and principles of least functionality, the operating system must
support the organizational requirements, providing only essential capabilities and limiting the
use of ports, protocols, and/or services to only those required, authorized, and approved to
conduct official business. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_configure_firewalld_ports | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | disa | CCI-000382, CCI-002314 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | ism | 1416 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | AC-4, CM-7(b), CA-3(5), SC-7(21), CM-6(a) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | os-srg | SRG-OS-000096-GPOS-00050, SRG-OS-000297-GPOS-00115 | stigid | OL08-00-040030 | pcidss4 | 1.3.1, 1.3 | stigref | SV-248835r958480_rule |
| |
|
Rule
Set Default firewalld Zone for Incoming Packets
[ref] | To set the default zone to drop for
the built-in default zone which processes incoming IPv4 and IPv6 packets,
modify the following line in
/etc/firewalld/firewalld.conf to be:
DefaultZone=drop
Warning:
To prevent denying any access to the system, automatic remediation
of this control is not available. Remediation must be automated as
a component of machine provisioning, or followed manually as outlined
above. | Rationale: | In firewalld the default zone is applied only after all
the applicable rules in the table are examined for a match. Setting the
default zone to drop implements proper design for a firewall, i.e.
any packets which are not explicitly permitted should not be
accepted. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_set_firewalld_default_zone | References: | cis-csc | 11, 14, 3, 9 | cjis | 5.10.1 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06 | cui | 3.1.3, 3.4.7, 3.13.6 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6 | ism | 1416 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2 | nist | CA-3(5), CM-7(b), SC-7(23), CM-6(a) | nist-csf | PR.IP-1, PR.PT-3 | pcidss | Req-1.4 | os-srg | SRG-OS-000480-GPOS-00227 | pcidss4 | 1.3.1, 1.3 |
| |
|
Group
Wireless Networking
Group contains 1 group and 1 rule |
[ref]
Wireless networking, such as 802.11
(WiFi) and Bluetooth, can present a security risk to sensitive or
classified systems and networks. Wireless networking hardware is
much more likely to be included in laptop or portable systems than
in desktops or servers.
Removal of hardware provides the greatest assurance that the wireless
capability remains disabled. Acquisition policies often include provisions to
prevent the purchase of equipment that will be used in sensitive spaces and
includes wireless capabilities. If it is impractical to remove the wireless
hardware, and policy permits the device to enter sensitive spaces as long
as wireless is disabled, efforts should instead focus on disabling wireless capability
via software. |
Group
Disable Wireless Through Software Configuration
Group contains 1 rule |
[ref]
If it is impossible to remove the wireless hardware
from the device in question, disable as much of it as possible
through software. The following methods can disable software
support for wireless networking, but note that these methods do not
prevent malicious software or careless users from re-activating the
devices. |
Rule
Deactivate Wireless Network Interfaces
[ref] | Deactivating wireless network interfaces should prevent normal usage of the wireless
capability.
Configure the system to disable all wireless network interfaces with the following command:
$ sudo nmcli radio all off
| Rationale: | The use of wireless networking can introduce many different attack vectors into
the organization's network. Common attack vectors such as malicious association
and ad hoc networks will allow an attacker to spoof a wireless access point
(AP), allowing validated systems to connect to the malicious AP and enabling the
attacker to monitor and record network traffic. These malicious APs can also
serve to create a man-in-the-middle attack or be used to create a denial of
service to valid network resources. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_wireless_disable_interfaces | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | cui | 3.1.16 | disa | CCI-001443, CCI-001444, CCI-002421, CCI-002418 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | ism | 1315, 1319 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | AC-18(a), AC-18(3), CM-7(a), CM-7(b), CM-6(a), MP-7 | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | pcidss | Req-1.3.3 | os-srg | SRG-OS-000299-GPOS-00117, SRG-OS-000300-GPOS-00118, SRG-OS-000424-GPOS-00188, SRG-OS-000481-GPOS-000481 | stigid | OL08-00-040110 | pcidss4 | 1.3.3, 1.3 | stigref | SV-248842r991568_rule |
| |
|
Rule
Prevent non-Privileged Users from Modifying Network Interfaces using nmcli
[ref] | By default, non-privileged users are given permissions to modify networking
interfaces and configurations using the nmcli command. Non-privileged
users should not be making configuration changes to network configurations. To
ensure that non-privileged users do not have permissions to make changes to the
network configuration using nmcli , create the following configuration in
/etc/polkit-1/localauthority/20-org.d/10-nm-harden-access.pkla :
[Disable General User Access to NetworkManager]
Identity=default
Action=org.freedesktop.NetworkManager.*
ResultAny=no
ResultInactive=no
ResultActive=auth_admin
| Rationale: | Allowing non-privileged users to make changes to network settings can allow
untrusted access, prevent system availability, and/or can lead to a compromise or
attack. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_network_nmcli_permissions | References: | | |
|
Rule
Ensure System is Not Acting as a Network Sniffer
[ref] | The system should not be acting as a network sniffer, which can
capture all traffic on the network to which it is connected. Run the following
to determine if any interface is running in promiscuous mode:
$ ip link | grep PROMISC
Promiscuous mode of an interface can be disabled with the following command:
$ sudo ip link set dev device_name multicast off promisc off
| Rationale: | Network interfaces in promiscuous mode allow for the capture of all network traffic
visible to the system. If unauthorized individuals can access these applications, it
may allow them to collect information such as logon IDs, passwords, and key exchanges
between systems.
If the system is being used to perform a network troubleshooting function, the use of these
tools must be documented with the Information Systems Security Manager (ISSM) and restricted
to only authorized personnel. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_network_sniffer_disabled | References: | cis-csc | 1, 11, 14, 3, 9 | cobit5 | APO11.06, APO12.06, BAI03.10, BAI09.01, BAI09.02, BAI09.03, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.05, DSS04.05, DSS05.02, DSS05.05, DSS06.06 | disa | CCI-000366 | isa-62443-2009 | 4.2.3.4, 4.3.3.3.7, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, 4.4.3.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6, SR 7.8 | iso27001-2013 | A.11.1.2, A.11.2.4, A.11.2.5, A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.16.1.6, A.8.1.1, A.8.1.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a), CM-7(2), MA-3 | nist-csf | DE.DP-5, ID.AM-1, PR.IP-1, PR.MA-1, PR.PT-3 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-040330 | pcidss4 | 1.4.5, 1.4 | stigref | SV-248899r991589_rule |
| |
|
Group
File Permissions and Masks
Group contains 5 groups and 18 rules |
[ref]
Traditional Unix security relies heavily on file and
directory permissions to prevent unauthorized users from reading or
modifying files to which they should not have access.
Several of the commands in this section search filesystems
for files or directories with certain characteristics, and are
intended to be run on every local partition on a given system.
When the variable PART appears in one of the commands below,
it means that the command is intended to be run repeatedly, with the
name of each local partition substituted for PART in turn.
The following command prints a list of all xfs partitions on the local
system, which is the default filesystem for Oracle Linux 8
installations:
$ mount -t xfs | awk '{print $3}'
For any systems that use a different
local filesystem type, modify this command as appropriate. |
Group
Verify Permissions on Important Files and
Directories
Group contains 1 group and 8 rules |
[ref]
Permissions for many files on a system must be set
restrictively to ensure sensitive information is properly protected.
This section discusses important
permission restrictions which can be verified
to ensure that no harmful discrepancies have
arisen. |
Group
Verify File Permissions Within Some Important Directories
Group contains 4 rules |
[ref]
Some directories contain files whose confidentiality or integrity
is notably important and may also be susceptible to misconfiguration over time, particularly if
unpackaged software is installed. As such,
an argument exists to verify that files' permissions within these directories remain
configured correctly and restrictively. |
Rule
Verify that System Executables Have Root Ownership
[ref] | System executables are stored in the following directories by default:
/bin
/sbin
/usr/bin
/usr/libexec
/usr/local/bin
/usr/local/sbin
/usr/sbin
All files in these directories should be owned by the root user.
If any file FILE in these directories is found
to be owned by a user other than root, correct its ownership with the
following command:
$ sudo chown root FILE
| Rationale: | System binaries are executed by privileged users as well as system services,
and restrictive permissions are necessary to ensure that their
execution of these programs cannot be co-opted. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_ownership_binary_dirs | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | disa | CCI-001499 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-5(6), CM-5(6).1, CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | os-srg | SRG-OS-000259-GPOS-00100 | stigid | OL08-00-010310 | anssi | R50 | stigref | SV-248568r991560_rule |
| |
|
Rule
Verify that Shared Library Files Have Root Ownership
[ref] | System-wide shared library files, which are linked to executables
during process load time or run time, are stored in the following directories
by default:
/lib
/lib64
/usr/lib
/usr/lib64
Kernel modules, which can be added to the kernel during runtime, are also
stored in /lib/modules . All files in these directories should be
owned by the root user. If the directory, or any file in these
directories, is found to be owned by a user other than root correct its
ownership with the following command:
$ sudo chown root FILE
| Rationale: | Files from shared library directories are loaded into the address
space of processes (including privileged ones) or of the kernel itself at
runtime. Proper ownership is necessary to protect the integrity of the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_ownership_library_dirs | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | disa | CCI-001499 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-5(6), CM-5(6).1, CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | os-srg | SRG-OS-000259-GPOS-00100 | stigid | OL08-00-010340 | stigref | SV-248571r991560_rule |
| |
|
Rule
Verify that System Executables Have Restrictive Permissions
[ref] | System executables are stored in the following directories by default:
/bin
/sbin
/usr/bin
/usr/libexec
/usr/local/bin
/usr/local/sbin
/usr/sbin
All files in these directories should not be group-writable or world-writable.
If any file FILE in these directories is found
to be group-writable or world-writable, correct its permission with the
following command:
$ sudo chmod go-w FILE
| Rationale: | System binaries are executed by privileged users, as well as system services,
and restrictive permissions are necessary to ensure execution of these programs
cannot be co-opted. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_binary_dirs | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | disa | CCI-001499 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-5(6), CM-5(6).1, CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | os-srg | SRG-OS-000259-GPOS-00100 | stigid | OL08-00-010300 | anssi | R50 | stigref | SV-248567r991560_rule |
| |
|
Rule
Verify that Shared Library Files Have Restrictive Permissions
[ref] | System-wide shared library files, which are linked to executables
during process load time or run time, are stored in the following directories
by default:
/lib
/lib64
/usr/lib
/usr/lib64
Kernel modules, which can be added to the kernel during runtime, are
stored in /lib/modules . All files in these directories
should not be group-writable or world-writable. If any file in these
directories is found to be group-writable or world-writable, correct
its permission with the following command:
$ sudo chmod go-w FILE
| Rationale: | Files from shared library directories are loaded into the address
space of processes (including privileged ones) or of the kernel itself at
runtime. Restrictive permissions are necessary to protect the integrity of the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_library_dirs | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | disa | CCI-001499 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-6(a), CM-5(6), CM-5(6).1, AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | os-srg | SRG-OS-000259-GPOS-00100 | stigid | OL08-00-010330 | stigref | SV-248570r991560_rule |
| |
|
Rule
Verify that All World-Writable Directories Have Sticky Bits Set
[ref] | When the so-called 'sticky bit' is set on a directory, only the owner of a given file may
remove that file from the directory. Without the sticky bit, any user with write access to a
directory may remove any file in the directory. Setting the sticky bit prevents users from
removing each other's files. In cases where there is no reason for a directory to be
world-writable, a better solution is to remove that permission rather than to set the sticky
bit. However, if a directory is used by a particular application, consult that application's
documentation instead of blindly changing modes.
To set the sticky bit on a world-writable directory DIR, run the following command:
$ sudo chmod +t DIR
Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of directories present on the system. It is
not a problem in most cases, but especially systems with a large number of directories can
be affected. See https://access.redhat.com/articles/6999111 . | Rationale: | Failing to set the sticky bit on public directories allows unauthorized users to delete files
in the directory structure.
The only authorized public directories are those temporary directories supplied with the
system, or those designed to be temporary file repositories. The setting is normally reserved
for directories used by the system, by users for temporary file storage (such as /tmp ),
and for directories requiring global read/write access. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_dir_perms_world_writable_sticky_bits | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | disa | CCI-001090 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | os-srg | SRG-OS-000138-GPOS-00069 | stigid | OL08-00-010190 | anssi | R54 | pcidss4 | 2.2.6, 2.2 | stigref | SV-248551r958524_rule |
| |
|
Rule
Ensure All SGID Executables Are Authorized
[ref] | The SGID (set group id) bit should be set only on files that were installed via authorized
means. A straightforward means of identifying unauthorized SGID files is determine if any were
not installed as part of an RPM package, which is cryptographically verified. Investigate the
origin of any unpackaged SGID files. This configuration check considers authorized SGID files
those which were installed via RPM. It is assumed that when an individual has sudo access to
install an RPM and all packages are signed with an organizationally-recognized GPG key, the
software should be considered an approved package on the system. Any SGID file not deployed
through an RPM will be flagged for further review. Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111 . | Rationale: | Executable files with the SGID permission run with the privileges of the owner of the file.
SGID files of uncertain provenance could allow for unprivileged users to elevate privileges.
The presence of these files should be strictly controlled on the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_sgid | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | anssi | R56 |
| |
|
Rule
Ensure All SUID Executables Are Authorized
[ref] | The SUID (set user id) bit should be set only on files that were installed via authorized
means. A straightforward means of identifying unauthorized SUID files is determine if any were
not installed as part of an RPM package, which is cryptographically verified. Investigate the
origin of any unpackaged SUID files. This configuration check considers authorized SUID files
those which were installed via RPM. It is assumed that when an individual has sudo access to
install an RPM and all packages are signed with an organizationally-recognized GPG key, the
software should be considered an approved package on the system. Any SUID file not deployed
through an RPM will be flagged for further review. Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111 . | Rationale: | Executable files with the SUID permission run with the privileges of the owner of the file.
SUID files of uncertain provenance could allow for unprivileged users to elevate privileges.
The presence of these files should be strictly controlled on the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_suid | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | anssi | R56 |
| |
|
Rule
Ensure No World-Writable Files Exist
[ref] | It is generally a good idea to remove global (other) write access to a file when it is
discovered. However, check with documentation for specific applications before making changes.
Also, monitor for recurring world-writable files, as these may be symptoms of a misconfigured
application or user account. Finally, this applies to real files and not virtual files that
are a part of pseudo file systems such as sysfs or procfs . Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111 . | Rationale: | Data in world-writable files can be modified by any user on the system. In almost all
circumstances, files can be configured using a combination of user and group permissions to
support whatever legitimate access is needed without the risk caused by world-writable files. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_world_writable | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | anssi | R54 | pcidss4 | 2.2.6, 2.2 |
| |
|
Group
Restrict Partition Mount Options
Group contains 3 rules |
[ref]
System partitions can be mounted with certain options
that limit what files on those partitions can do. These options
are set in the /etc/fstab configuration file, and can be
used to make certain types of malicious behavior more difficult. |
Rule
Add nodev Option to /dev/shm
[ref] | The nodev mount option can be used to prevent creation of device
files in /dev/shm . Legitimate character and block devices should
not exist within temporary directories like /dev/shm .
Add the nodev option to the fourth column of
/etc/fstab for the line which controls mounting of
/dev/shm . | Rationale: | The only legitimate location for device files is the /dev directory
located on the root partition. The only exception to this is chroot jails. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_mount_option_dev_shm_nodev | References: | cis-csc | 11, 13, 14, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS05.06, DSS06.06 | disa | CCI-001764 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6 | iso27001-2013 | A.11.2.9, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.8.2.1, A.8.2.2, A.8.2.3, A.8.3.1, A.8.3.3, A.9.1.2 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-7(a), CM-7(b), CM-6(a), AC-6, AC-6(1), MP-7 | nist-csf | PR.IP-1, PR.PT-2, PR.PT-3 | os-srg | SRG-OS-000368-GPOS-00154 | stigid | OL08-00-040120 | stigref | SV-248844r958804_rule |
| |
|
Rule
Add noexec Option to /dev/shm
[ref] | The noexec mount option can be used to prevent binaries
from being executed out of /dev/shm .
It can be dangerous to allow the execution of binaries
from world-writable temporary storage directories such as /dev/shm .
Add the noexec option to the fourth column of
/etc/fstab for the line which controls mounting of
/dev/shm . | Rationale: | Allowing users to execute binaries from world-writable directories
such as /dev/shm can expose the system to potential compromise. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_mount_option_dev_shm_noexec | References: | cis-csc | 11, 13, 14, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS05.06, DSS06.06 | disa | CCI-001764 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6 | iso27001-2013 | A.11.2.9, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.8.2.1, A.8.2.2, A.8.2.3, A.8.3.1, A.8.3.3, A.9.1.2 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-7(a), CM-7(b), CM-6(a), AC-6, AC-6(1), MP-7 | nist-csf | PR.IP-1, PR.PT-2, PR.PT-3 | os-srg | SRG-OS-000368-GPOS-00154 | stigid | OL08-00-040122 | stigref | SV-248846r958804_rule |
| |
|
Rule
Add nosuid Option to /dev/shm
[ref] | The nosuid mount option can be used to prevent execution
of setuid programs in /dev/shm . The SUID and SGID permissions should not
be required in these world-writable directories.
Add the nosuid option to the fourth column of
/etc/fstab for the line which controls mounting of
/dev/shm . | Rationale: | The presence of SUID and SGID executables should be tightly controlled. Users
should not be able to execute SUID or SGID binaries from temporary storage partitions. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_mount_option_dev_shm_nosuid | References: | cis-csc | 11, 13, 14, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS05.06, DSS06.06 | disa | CCI-001764 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6 | iso27001-2013 | A.11.2.9, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.8.2.1, A.8.2.2, A.8.2.3, A.8.3.1, A.8.3.3, A.9.1.2 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-7(a), CM-7(b), CM-6(a), AC-6, AC-6(1), MP-7 | nist-csf | PR.IP-1, PR.PT-2, PR.PT-3 | os-srg | SRG-OS-000368-GPOS-00154 | stigid | OL08-00-040121 | stigref | SV-248845r958804_rule |
| |
|
Group
Restrict Programs from Dangerous Execution Patterns
Group contains 1 group and 7 rules |
[ref]
The recommendations in this section are designed to
ensure that the system's features to protect against potentially
dangerous program execution are activated.
These protections are applied at the system initialization or
kernel level, and defend against certain types of badly-configured
or compromised programs. |
Group
Enable ExecShield
Group contains 2 rules |
[ref]
ExecShield describes kernel features that provide
protection against exploitation of memory corruption errors such as buffer
overflows. These features include random placement of the stack and other
memory regions, prevention of execution in memory that should only hold data,
and special handling of text buffers. These protections are enabled by default
on 32-bit systems and controlled through sysctl variables
kernel.exec-shield and kernel.randomize_va_space . On the latest
64-bit systems, kernel.exec-shield cannot be enabled or disabled with
sysctl . |
Rule
Restrict Exposed Kernel Pointer Addresses Access
[ref] | To set the runtime status of the kernel.kptr_restrict kernel parameter, run the following command: $ sudo sysctl -w kernel.kptr_restrict=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : kernel.kptr_restrict = 1
| Rationale: | Exposing kernel pointers (through procfs or seq_printf() ) exposes kernel
writeable structures which may contain functions pointers. If a write vulnerability
occurs in the kernel, allowing write access to any of this structure, the kernel can
be compromised. This option disallow any program without the CAP_SYSLOG capability
to get the addresses of kernel pointers by replacing them with 0. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_kernel_kptr_restrict | References: | disa | CCI-000366, CCI-002824, CCI-001082 | nerc-cip | CIP-002-5 R1.1, CIP-002-5 R1.2, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 4.1, CIP-004-6 4.2, CIP-004-6 R2.2.3, CIP-004-6 R2.2.4, CIP-004-6 R2.3, CIP-004-6 R4, CIP-005-6 R1, CIP-005-6 R1.1, CIP-005-6 R1.2, CIP-007-3 R3, CIP-007-3 R3.1, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, CIP-007-3 R8.4, CIP-009-6 R.1.1, CIP-009-6 R4 | nist | SC-30, SC-30(2), SC-30(5), CM-6(a) | os-srg | SRG-OS-000132-GPOS-00067, SRG-OS-000433-GPOS-00192, SRG-OS-000480-GPOS-00227 | stigid | OL08-00-040283 | anssi | R9 | stigref | SV-248891r991589_rule |
| |
|
Rule
Enable Randomized Layout of Virtual Address Space
[ref] | To set the runtime status of the kernel.randomize_va_space kernel parameter, run the following command: $ sudo sysctl -w kernel.randomize_va_space=2
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : kernel.randomize_va_space = 2
| Rationale: | Address space layout randomization (ASLR) makes it more difficult for an
attacker to predict the location of attack code they have introduced into a
process's address space during an attempt at exploitation. Additionally,
ASLR makes it more difficult for an attacker to know the location of
existing code in order to re-purpose it using return oriented programming
(ROP) techniques. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_kernel_randomize_va_space | References: | cui | 3.1.7 | disa | CCI-000366, CCI-002824 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e) | nerc-cip | CIP-002-5 R1.1, CIP-002-5 R1.2, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 4.1, CIP-004-6 4.2, CIP-004-6 R2.2.3, CIP-004-6 R2.2.4, CIP-004-6 R2.3, CIP-004-6 R4, CIP-005-6 R1, CIP-005-6 R1.1, CIP-005-6 R1.2, CIP-007-3 R3, CIP-007-3 R3.1, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, CIP-007-3 R8.4, CIP-009-6 R.1.1, CIP-009-6 R4 | nist | SC-30, SC-30(2), CM-6(a) | pcidss | Req-2.2.1 | os-srg | SRG-OS-000433-GPOS-00193, SRG-OS-000480-GPOS-00227 | app-srg-ctr | SRG-APP-000450-CTR-001105 | stigid | OL08-00-010430 | anssi | R9 | pcidss4 | 3.3.1.1, 3.3.1, 3.3 | stigref | SV-248594r958928_rule |
| |
|
Rule
Restrict Access to Kernel Message Buffer
[ref] | To set the runtime status of the kernel.dmesg_restrict kernel parameter, run the following command: $ sudo sysctl -w kernel.dmesg_restrict=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : kernel.dmesg_restrict = 1
| Rationale: | Unprivileged access to the kernel syslog can expose sensitive kernel
address information. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_kernel_dmesg_restrict | References: | cui | 3.1.5 | disa | CCI-001082, CCI-001090 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e) | nist | SI-11(a), SI-11(b) | os-srg | SRG-OS-000132-GPOS-00067, SRG-OS-000138-GPOS-00069 | app-srg-ctr | SRG-APP-000243-CTR-000600 | stigid | OL08-00-010375 | anssi | R9 | stigref | SV-248579r958524_rule |
| |
|
Rule
Disable Kernel Image Loading
[ref] | To set the runtime status of the kernel.kexec_load_disabled kernel parameter, run the following command: $ sudo sysctl -w kernel.kexec_load_disabled=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : kernel.kexec_load_disabled = 1
| Rationale: | Disabling kexec_load allows greater control of the kernel memory.
It makes it impossible to load another kernel image after it has been disabled.
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_kernel_kexec_load_disabled | References: | disa | CCI-003992, CCI-000366 | nist | CM-6 | os-srg | SRG-OS-000480-GPOS-00227, SRG-OS-000366-GPOS-00153 | stigid | OL08-00-010372 | stigref | SV-248576r1015033_rule |
| |
|
Rule
Disable Access to Network bpf() Syscall From Unprivileged Processes
[ref] | To set the runtime status of the kernel.unprivileged_bpf_disabled kernel parameter, run the following command: $ sudo sysctl -w kernel.unprivileged_bpf_disabled=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : kernel.unprivileged_bpf_disabled = 1
| Rationale: | Loading and accessing the packet filters programs and maps using the bpf()
syscall has the potential of revealing sensitive information about the kernel state. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_kernel_unprivileged_bpf_disabled | References: | | |
|
Rule
Restrict usage of ptrace to descendant processes
[ref] | To set the runtime status of the kernel.yama.ptrace_scope kernel parameter, run the following command: $ sudo sysctl -w kernel.yama.ptrace_scope=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : kernel.yama.ptrace_scope = 1
| Rationale: | Unrestricted usage of ptrace allows compromised binaries to run ptrace
on another processes of the user. Like this, the attacker can steal
sensitive information from the target processes (e.g. SSH sessions, web browser, ...)
without any additional assistance from the user (i.e. without resorting to phishing).
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_kernel_yama_ptrace_scope | References: | | |
|
Rule
Harden the operation of the BPF just-in-time compiler
[ref] | To set the runtime status of the net.core.bpf_jit_harden kernel parameter, run the following command: $ sudo sysctl -w net.core.bpf_jit_harden=2
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.core.bpf_jit_harden = 2
| Rationale: | When hardened, the extended Berkeley Packet Filter just-in-time compiler
will randomize any kernel addresses in the BPF programs and maps,
and will not expose the JIT addresses in /proc/kallsyms . | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_core_bpf_jit_harden | References: | | |
|
Group
SELinux
Group contains 1 group and 6 rules |
[ref]
SELinux is a feature of the Linux kernel which can be
used to guard against misconfigured or compromised programs.
SELinux enforces the idea that programs should be limited in what
files they can access and what actions they can take.
The default SELinux policy, as configured on Oracle Linux 8, has been
sufficiently developed and debugged that it should be usable on
almost any system with minimal configuration and a small
amount of system administrator training. This policy prevents
system services - including most of the common network-visible
services such as mail servers, FTP servers, and DNS servers - from
accessing files which those services have no valid reason to
access. This action alone prevents a huge amount of possible damage
from network attacks against services, from trojaned software, and
so forth.
This guide recommends that SELinux be enabled using the
default (targeted) policy on every Oracle Linux 8 system, unless that
system has unusual requirements which make a stronger policy
appropriate.
For more information on SELinux, see https://docs.oracle.com/en/operating-systems/oracle-linux/selinux/. |
Group
SELinux - Booleans
Group contains 4 rules |
[ref]
Enable or Disable runtime customization of SELinux system policies
without having to reload or recompile the SELinux policy. |
Rule
Enable the auditadm_exec_content SELinux Boolean
[ref] | By default, the SELinux boolean auditadm_exec_content is enabled.
If this setting is disabled, it should be enabled.
To enable the auditadm_exec_content SELinux boolean, run the following command:
$ sudo setsebool -P auditadm_exec_content on
| Rationale: | | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sebool_auditadm_exec_content | References: | cui | 80424-5 | ism | 0582, 0584, 05885, 0586, 0846, 0957 |
| |
|
Rule
Disable the authlogin_nsswitch_use_ldap SELinux Boolean
[ref] | By default, the SELinux boolean authlogin_nsswitch_use_ldap is disabled.
If this setting is enabled, it should be disabled.
To disable the authlogin_nsswitch_use_ldap SELinux boolean, run the following command:
$ sudo setsebool -P authlogin_nsswitch_use_ldap off
| Rationale: | | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sebool_authlogin_nsswitch_use_ldap | References: | cui | 3.7.2 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 |
| |
|
Rule
Disable the authlogin_radius SELinux Boolean
[ref] | By default, the SELinux boolean authlogin_radius is disabled.
If this setting is enabled, it should be disabled.
To disable the authlogin_radius SELinux boolean, run the following command:
$ sudo setsebool -P authlogin_radius off
| Rationale: | | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sebool_authlogin_radius | References: | cui | 3.7.2 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 |
| |
|
Rule
Enable the kerberos_enabled SELinux Boolean
[ref] | By default, the SELinux boolean kerberos_enabled is enabled.
If this setting is disabled, it should be enabled to allow confined
applications to run with Kerberos.
To enable the kerberos_enabled SELinux boolean, run the following command:
$ sudo setsebool -P kerberos_enabled on
| Rationale: | | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sebool_kerberos_enabled | References: | | |
|
Rule
Configure SELinux Policy
[ref] | The SELinux targeted policy is appropriate for
general-purpose desktops and servers, as well as systems in many other roles.
To configure the system to use this policy, add or correct the following line
in /etc/selinux/config :
SELINUXTYPE=targeted
Other policies, such as mls , provide additional security labeling
and greater confinement but are not compatible with many general-purpose
use cases. | Rationale: | Setting the SELinux policy to targeted or a more specialized policy
ensures the system will confine processes that are likely to be
targeted for exploitation, such as network or system services.
Note: During the development or debugging of SELinux modules, it is common to
temporarily place non-production systems in permissive mode. In such
temporary cases, SELinux policies should be developed, and once work
is completed, the system should be reconfigured to
targeted . | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_selinux_policytype | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 5, 6, 8, 9 | cobit5 | APO01.06, APO11.04, APO13.01, BAI03.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06, MEA02.01 | cui | 3.1.2, 3.7.2 | disa | CCI-002696 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e) | isa-62443-2009 | 4.2.3.4, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, 4.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.2, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-004-6 R3.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, CIP-007-3 R6.5 | nist | AC-3, AC-3(3)(a), AU-9, SC-7(21) | nist-csf | DE.AE-1, ID.AM-3, PR.AC-4, PR.AC-5, PR.AC-6, PR.DS-5, PR.PT-1, PR.PT-3, PR.PT-4 | os-srg | SRG-OS-000445-GPOS-00199 | app-srg-ctr | SRG-APP-000233-CTR-000585 | stigid | OL08-00-010450 | anssi | R46, R64 | bsi | APP.4.4.A4, SYS.1.6.A3, SYS.1.6.A18, SYS.1.6.A21 | pcidss4 | 1.2.6, 1.2 | stigref | SV-248596r958944_rule |
| |
|
Rule
Ensure SELinux State is Enforcing
[ref] | The SELinux state should be set to enforcing at
system boot time. In the file /etc/selinux/config , add or correct the
following line to configure the system to boot into enforcing mode:
SELINUX=enforcing
| Rationale: | Setting the SELinux state to enforcing ensures SELinux is able to confine
potentially compromised processes to the security policy, which is designed to
prevent them from causing damage to the system or further elevating their
privileges. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_selinux_state | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 5, 6, 8, 9 | cobit5 | APO01.06, APO11.04, APO13.01, BAI03.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06, MEA02.01 | cui | 3.1.2, 3.7.2 | disa | CCI-002696, CCI-001084 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e) | isa-62443-2009 | 4.2.3.4, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, 4.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.2, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-004-6 R3.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, CIP-007-3 R6.5 | nist | AC-3, AC-3(3)(a), AU-9, SC-7(21) | nist-csf | DE.AE-1, ID.AM-3, PR.AC-4, PR.AC-5, PR.AC-6, PR.DS-5, PR.PT-1, PR.PT-3, PR.PT-4 | os-srg | SRG-OS-000445-GPOS-00199, SRG-OS-000134-GPOS-00068 | stigid | OL08-00-010170 | anssi | R37, R79 | bsi | APP.4.4.A4, SYS.1.6.A3, SYS.1.6.A18, SYS.1.6.A21 | pcidss4 | 1.2.6, 1.2 | stigref | SV-248548r958518_rule |
| |
|
Group
Services
Group contains 19 groups and 41 rules |
[ref]
The best protection against vulnerable software is running less software. This section describes how to review
the software which Oracle Linux 8 installs on a system and disable software which is not needed. It
then enumerates the software packages installed on a default Oracle Linux 8 system and provides guidance about which
ones can be safely disabled.
Oracle Linux 8 provides a convenient minimal install option that essentially installs the bare necessities for a functional
system. When building Oracle Linux 8 systems, it is highly recommended to select the minimal packages and then build up
the system from there. |
Group
Avahi Server
Group contains 1 group and 1 rule |
[ref]
The Avahi daemon implements the DNS Service Discovery
and Multicast DNS protocols, which provide service and host
discovery on a network. It allows a system to automatically
identify resources on the network, such as printers or web servers.
This capability is also known as mDNSresponder and is a major part
of Zeroconf networking. |
Group
Disable Avahi Server if Possible
Group contains 1 rule |
[ref]
Because the Avahi daemon service keeps an open network
port, it is subject to network attacks.
Disabling it can reduce the system's vulnerability to such attacks. |
Rule
Disable Avahi Server Software
[ref] |
The avahi-daemon service can be disabled with the following command:
$ sudo systemctl mask --now avahi-daemon.service
| Rationale: | Because the Avahi daemon service keeps an open network
port, it is subject to network attacks. Its functionality
is convenient but is only appropriate if the local network
can be trusted. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_avahi-daemon_disabled | References: | cis-csc | 11, 14, 3, 9 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.IP-1, PR.PT-3 | pcidss4 | 2.2.4, 2.2 |
| |
|
Group
Application Whitelisting Daemon
Group contains 2 rules |
[ref]
Fapolicyd (File Access Policy Daemon) implements application whitelisting
to decide file access rights. Applications that are known via a reputation
source are allowed access while unknown applications are not. The daemon
makes use of the kernel's fanotify interface to determine file access rights. |
Rule
Install fapolicyd Package
[ref] | The fapolicyd package can be installed with the following command:
$ sudo yum install fapolicyd
| Rationale: | fapolicyd (File Access Policy Daemon)
implements application whitelisting to decide file access rights.
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_fapolicyd_installed | References: | disa | CCI-001774, CCI-001764 | nist | CM-6(a), SI-4(22) | os-srg | SRG-OS-000370-GPOS-00155, SRG-OS-000368-GPOS-00154, SRG-OS-000480-GPOS-00230 | stigid | OL08-00-040135 | stigref | SV-248859r958804_rule |
| |
|
Rule
Enable the File Access Policy Service
[ref] | The File Access Policy service should be enabled.
The fapolicyd service can be enabled with the following command:
$ sudo systemctl enable fapolicyd.service
| Rationale: | The fapolicyd service (File Access Policy Daemon)
implements application whitelisting to decide file access rights. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_fapolicyd_enabled | References: | disa | CCI-001774, CCI-001764 | nist | CM-6(a), SI-4(22) | ospp | FMT_SMF_EXT.1 | os-srg | SRG-OS-000370-GPOS-00155, SRG-OS-000368-GPOS-00154, SRG-OS-000480-GPOS-00230 | stigid | OL08-00-040136 | stigref | SV-248860r958804_rule |
| |
|
Group
Kerberos
Group contains 1 rule |
[ref]
The Kerberos protocol is used for authentication across
non-secure network. Authentication can happen between
various types of principals -- users, service, or hosts.
Their identity and encryption keys can be stored in keytab
files. |
Rule
Disable Kerberos by removing host keytab
[ref] | Kerberos may rely on key distribution functions unapproved by Common Criteria.
To prevent using Kerberos by system daemons, remove the Kerberos keytab files, especially
/etc/krb5.keytab . | Rationale: | Some key derivation functions (KDF) in Kerberos are not FIPS-compatible | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_kerberos_disable_no_keytab | References: | | |
|
Group
Network Time Protocol
Group contains 5 rules |
[ref]
The Network Time Protocol is used to manage the system
clock over a network. Computer clocks are not very accurate, so
time will drift unpredictably on unmanaged systems. Central time
protocols can be used both to ensure that time is consistent among
a network of systems, and that their time is consistent with the
outside world.
If every system on a network reliably reports the same time, then it is much
easier to correlate log messages in case of an attack. In addition, a number of
cryptographic protocols (such as Kerberos) use timestamps to prevent certain
types of attacks. If your network does not have synchronized time, these
protocols may be unreliable or even unusable.
Depending on the specifics of the network, global time accuracy may be just as
important as local synchronization, or not very important at all. If your
network is connected to the Internet, using a public timeserver (or one
provided by your enterprise) provides globally accurate timestamps which may be
essential in investigating or responding to an attack which originated outside
of your network.
A typical network setup involves a small number of internal systems operating
as NTP servers, and the remainder obtaining time information from those
internal servers.
There is a choice between the daemons ntpd and chronyd , which
are available from the repositories in the ntp and chrony
packages respectively.
The default chronyd daemon can work well when external time references
are only intermittently accesible, can perform well even when the network is
congested for longer periods of time, can usually synchronize the clock faster
and with better time accuracy, and quickly adapts to sudden changes in the rate
of the clock, for example, due to changes in the temperature of the crystal
oscillator. Chronyd should be considered for all systems which are
frequently suspended or otherwise intermittently disconnected and reconnected
to a network. Mobile and virtual systems for example.
The ntpd NTP daemon fully supports NTP protocol version 4 (RFC 5905),
including broadcast, multicast, manycast clients and servers, and the orphan
mode. It also supports extra authentication schemes based on public-key
cryptography (RFC 5906). The NTP daemon ( ntpd ) should be considered
for systems which are normally kept permanently on. Systems which are required
to use broadcast or multicast IP, or to perform authentication of packets with
the Autokey protocol, should consider using ntpd .
Refer to
https://docs.oracle.com/en/operating-systems/oracle-linux/8/network/network-ConfiguringNetworkTime.html#ol-nettime
for more detailed comparison of features of chronyd
and ntpd daemon features respectively, and for further guidance how to
choose between the two NTP daemons.
The upstream manual pages at
https://chrony-project.org/documentation.html for
chronyd and
http://www.ntp.org for ntpd provide additional
information on the capabilities and configuration of each of the NTP daemons. |
Rule
The Chrony package is installed
[ref] | System time should be synchronized between all systems in an environment. This is
typically done by establishing an authoritative time server or set of servers and having all
systems synchronize their clocks to them.
The chrony package can be installed with the following command:
$ sudo yum install chrony
| Rationale: | Time synchronization is important to support time sensitive security mechanisms like
Kerberos and also ensures log files have consistent time records across the enterprise,
which aids in forensic investigations. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_chrony_installed | References: | | |
|
Rule
The Chronyd service is enabled
[ref] | chrony is a daemon which implements the Network Time Protocol (NTP) is designed to
synchronize system clocks across a variety of systems and use a source that is highly
accurate. More information on chrony can be found at
https://chrony-project.org/.
Chrony can be configured to be a client and/or a server.
To enable Chronyd service, you can run:
# systemctl enable chronyd.service
This recommendation only applies if chrony is in use on the system. | Rationale: | If chrony is in use on the system proper configuration is vital to ensuring time
synchronization is working properly. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_chronyd_enabled | References: | | |
|
Rule
A remote time server for Chrony is configured
[ref] | Chrony is a daemon which implements the Network Time Protocol (NTP). It is designed
to synchronize system clocks across a variety of systems and use a source that is highly
accurate. More information on chrony can be found at
https://chrony-project.org/.
Chrony can be configured to be a client and/or a server.
Add or edit server or pool lines to /etc/chrony.conf as appropriate:
server <remote-server>
Multiple servers may be configured. | Rationale: | If chrony is in use on the system proper configuration is vital to ensuring time
synchronization is working properly. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_chronyd_specify_remote_server | References: | | |
|
Rule
Chrony Configure Pool and Server
[ref] | Chrony is a daemon which implements the Network Time Protocol (NTP). It is designed to
synchronize system clocks across a variety of systems and use a source that is highly
accurate. More information on chrony can be found at
https://chrony-project.org/.
Chrony can be configured to be a client and/or a server.
Add or edit server or pool lines to /etc/chrony.conf as appropriate:
server <remote-server>
Multiple servers may be configured. | Rationale: | If chrony is in use on the system proper configuration is vital to ensuring time
synchronization is working properly. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_chronyd_configure_pool_and_server | References: | | |
|
Rule
Specify Additional Remote NTP Servers
[ref] | Depending on specific functional requirements of a concrete
production environment, the Oracle Linux 8 system can be
configured to utilize the services of the chronyd NTP daemon (the
default), or services of the ntpd NTP daemon. Refer to
https://docs.oracle.com/en/operating-systems/oracle-linux/8/network/network-ConfiguringNetworkTime.html#ol-nettime
for more detailed comparison of the features of both of the choices, and for
further guidance how to choose between the two NTP daemons.
Additional NTP servers can be specified for time synchronization. To do so,
perform the following:
- if the system is configured to use the
chronyd as the NTP daemon
(the default), edit the file /etc/chrony.conf as follows, - if the system is configured to use the
ntpd as the NTP daemon,
edit the file /etc/ntp.conf as documented below.
Add additional lines of the following form, substituting the IP address or
hostname of a remote NTP server for ntpserver:
server ntpserver
| Rationale: | Specifying additional NTP servers increases the availability of
accurate time data, in the event that one of the specified servers becomes
unavailable. This is typical for a system acting as an NTP server for
other systems. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_chronyd_or_ntpd_specify_multiple_servers | References: | cis-csc | 1, 14, 15, 16, 3, 5, 6 | cobit5 | APO11.04, BAI03.05, DSS05.04, DSS05.07, MEA02.01 | isa-62443-2009 | 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9 | ism | 0988, 1405 | iso27001-2013 | A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1 | nist | CM-6(a), AU-8(1)(a), AU-8(2), AU-12(1) | nist-csf | PR.PT-1 | pcidss | Req-10.4.3 |
| |
|
Group
Obsolete Services
Group contains 4 groups and 9 rules |
[ref]
This section discusses a number of network-visible
services which have historically caused problems for system
security, and for which disabling or severely limiting the service
has been the best available guidance for some time. As a result of
this, many of these services are not installed as part of Oracle Linux 8
by default.
Organizations which are running these services should
switch to more secure equivalents as soon as possible.
If it remains absolutely necessary to run one of
these services for legacy reasons, care should be taken to restrict
the service as much as possible, for instance by configuring host
firewall software such as iptables to restrict access to the
vulnerable service to only those remote hosts which have a known
need to use it. |
Group
Xinetd
Group contains 2 rules |
[ref]
The xinetd service acts as a dedicated listener for some
network services (mostly, obsolete ones) and can be used to provide access
controls and perform some logging. It has been largely obsoleted by other
features, and it is not installed by default. The older Inetd service
is not even available as part of Oracle Linux 8. |
Rule
Uninstall xinetd Package
[ref] | The xinetd package can be removed with the following command:
$ sudo yum erase xinetd
| Rationale: | Removing the xinetd package decreases the risk of the
xinetd service's accidental (or intentional) activation. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_package_xinetd_removed | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | disa | CCI-000305 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Rule
Disable xinetd Service
[ref] |
The xinetd service can be disabled with the following command:
$ sudo systemctl mask --now xinetd.service
| Rationale: | The xinetd service provides a dedicated listener service for some programs,
which is no longer necessary for commonly-used network services. Disabling
it ensures that these uncommon services are not running, and also prevents
attacks against xinetd itself. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_xinetd_disabled | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | cui | 3.4.7 | disa | CCI-000305 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 |
| |
|
Group
Rlogin, Rsh, and Rexec
Group contains 2 rules |
[ref]
The Berkeley r-commands are legacy services which
allow cleartext remote access and have an insecure trust
model. |
Rule
Uninstall rsh-server Package
[ref] | The rsh-server package can be removed with the following command:
$ sudo yum erase rsh-server
| Rationale: | The rsh-server service provides unencrypted remote access service which does not
provide for the confidentiality and integrity of user passwords or the remote session and has very weak
authentication. If a privileged user were to login using this service, the privileged user password
could be compromised. The rsh-server package provides several obsolete and insecure
network services. Removing it decreases the risk of those services' accidental (or intentional)
activation. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_package_rsh-server_removed | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | disa | CCI-000381 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a), IA-5(1)(c) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | os-srg | SRG-OS-000095-GPOS-00049 | stigid | OL08-00-040010 | anssi | R62 | pcidss4 | 2.2.4, 2.2 | stigref | SV-248827r958478_rule |
| |
|
Rule
Uninstall rsh Package
[ref] |
The rsh package contains the client commands
for the rsh services | Rationale: | These legacy clients contain numerous security exposures and have
been replaced with the more secure SSH package. Even if the server is removed,
it is best to ensure the clients are also removed to prevent users from
inadvertently attempting to use these commands and therefore exposing
their credentials. Note that removing the rsh package removes
the clients for rsh ,rcp , and rlogin . | Severity: | unknown | Rule ID: | xccdf_org.ssgproject.content_rule_package_rsh_removed | References: | cui | 3.1.13 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | iso27001-2013 | A.8.2.3, A.13.1.1, A.13.2.1, A.13.2.3, A.14.1.2, A.14.1.3 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Group
Chat/Messaging Services
Group contains 2 rules |
[ref]
The talk software makes it possible for users to send and receive messages
across systems through a terminal session. |
Rule
Uninstall talk-server Package
[ref] | The talk-server package can be removed with the following command: $ sudo yum erase talk-server
| Rationale: | The talk software presents a security risk as it uses unencrypted protocols
for communications. Removing the talk-server package decreases the
risk of the accidental (or intentional) activation of talk services. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_talk-server_removed | References: | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Rule
Uninstall talk Package
[ref] | The talk package contains the client program for the
Internet talk protocol, which allows the user to chat with other users on
different systems. Talk is a communication program which copies lines from one
terminal to the terminal of another user.
The talk package can be removed with the following command:
$ sudo yum erase talk
| Rationale: | The talk software presents a security risk as it uses unencrypted protocols
for communications. Removing the talk package decreases the
risk of the accidental (or intentional) activation of talk client program. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_talk_removed | References: | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Group
Telnet
Group contains 3 rules |
[ref]
The telnet protocol does not provide confidentiality or integrity
for information transmitted on the network. This includes authentication
information such as passwords. Organizations which use telnet should be
actively working to migrate to a more secure protocol. |
Rule
Uninstall telnet-server Package
[ref] | The telnet-server package can be removed with the following command:
$ sudo yum erase telnet-server
| Rationale: | It is detrimental for operating systems to provide, or install by default,
functionality exceeding requirements or mission objectives. These
unnecessary capabilities are often overlooked and therefore may remain
unsecure. They increase the risk to the platform by providing additional
attack vectors.
The telnet service provides an unencrypted remote access service which does
not provide for the confidentiality and integrity of user passwords or the
remote session. If a privileged user were to login using this service, the
privileged user password could be compromised.
Removing the telnet-server package decreases the risk of the
telnet service's accidental (or intentional) activation. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_package_telnet-server_removed | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | disa | CCI-000381 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | pcidss | Req-2.2.2 | os-srg | SRG-OS-000095-GPOS-00049 | stigid | OL08-00-040000 | anssi | R62 | pcidss4 | 2.2.4, 2.2 | stigref | SV-248823r958478_rule |
| |
|
Rule
Remove telnet Clients
[ref] | The telnet client allows users to start connections to other systems via
the telnet protocol. | Rationale: | The telnet protocol is insecure and unencrypted. The use
of an unencrypted transmission medium could allow an unauthorized user
to steal credentials. The ssh package provides an
encrypted session and stronger security and is included in Oracle Linux 8. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_package_telnet_removed | References: | cui | 3.1.13 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | iso27001-2013 | A.8.2.3, A.13.1.1, A.13.2.1, A.13.2.3, A.14.1.2, A.14.1.3 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Rule
Disable telnet Service
[ref] | Make sure that the activation of the telnet service on system boot is disabled.
The telnet socket can be disabled with the following command:
$ sudo systemctl mask --now telnet.socket
Warning:
If the system relies on xinetd to manage telnet sessions, ensure the telnet service
is disabled by the following line: disable = yes . Note that the xinetd file for
telnet is not created automatically, therefore it might have different names. | Rationale: | The telnet protocol uses unencrypted network communication, which means that data from the
login session, including passwords and all other information transmitted during the session,
can be stolen by eavesdroppers on the network. The telnet protocol is also subject to
man-in-the-middle attacks. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_service_telnet_disabled | References: | cis-csc | 1, 11, 12, 14, 15, 16, 3, 5, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.06, DSS06.10 | cui | 3.1.13, 3.4.7 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.18.1.4, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | CM-7(a), CM-7(b), CM-6(a), IA-5(1)(c) | nist-csf | PR.AC-1, PR.AC-3, PR.AC-6, PR.AC-7, PR.IP-1, PR.PT-3, PR.PT-4 |
| |
|
Group
Proxy Server
Group contains 1 group and 2 rules |
[ref]
A proxy server is a very desirable target for a
potential adversary because much (or all) sensitive data for a
given infrastructure may flow through it. Therefore, if one is
required, the system acting as a proxy server should be dedicated
to that purpose alone and be stored in a physically secure
location. The system's default proxy server software is Squid, and
provided in an RPM package of the same name. |
Group
Disable Squid if Possible
Group contains 2 rules |
[ref]
If Squid was installed and activated, but the system
does not need to act as a proxy server, then it should be disabled
and removed. |
Rule
Uninstall squid Package
[ref] | The squid package can be removed with the following command: $ sudo yum erase squid
| Rationale: | If there is no need to make the proxy server software available,
removing it provides a safeguard against its activation. | Severity: | unknown | Rule ID: | xccdf_org.ssgproject.content_rule_package_squid_removed | |
|
Rule
Disable Squid
[ref] |
The squid service can be disabled with the following command:
$ sudo systemctl mask --now squid.service
| Rationale: | Running proxy server software provides a network-based avenue
of attack, and should be removed if not needed. | Severity: | unknown | Rule ID: | xccdf_org.ssgproject.content_rule_service_squid_disabled | |
|
Group
SNMP Server
Group contains 2 groups and 2 rules |
[ref]
The Simple Network Management Protocol allows
administrators to monitor the state of network devices, including
computers. Older versions of SNMP were well-known for weak
security, such as plaintext transmission of the community string
(used for authentication) and usage of easily-guessable
choices for the community string. |
Group
Disable SNMP Server if Possible
Group contains 1 rule |
[ref]
The system includes an SNMP daemon that allows for its remote
monitoring, though it not installed by default. If it was installed and
activated but is not needed, the software should be disabled and removed. |
Rule
Disable snmpd Service
[ref] |
The snmpd service can be disabled with the following command:
$ sudo systemctl mask --now snmpd.service
| Rationale: | Running SNMP software provides a network-based avenue of attack, and
should be disabled if not needed. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_service_snmpd_disabled | References: | | |
|
Group
Configure SNMP Server if Necessary
Group contains 1 rule |
[ref]
If it is necessary to run the snmpd agent on the system, some best
practices should be followed to minimize the security risk from the
installation. The multiple security models implemented by SNMP cannot be fully
covered here so only the following general configuration advice can be offered:
- use only SNMP version 3 security models and enable the use of authentication and encryption
- write access to the MIB (Management Information Base) should be allowed only if necessary
- all access to the MIB should be restricted following a principle of least privilege
- network access should be limited to the maximum extent possible including restricting to expected network
addresses both in the configuration files and in the system firewall rules
- ensure SNMP agents send traps only to, and accept SNMP queries only from, authorized management
stations
- ensure that permissions on the
snmpd.conf configuration file (by default, in /etc/snmp ) are 640 or more restrictive - ensure that any MIB files' permissions are also 640 or more restrictive
|
Rule
Configure SNMP Service to Use Only SNMPv3 or Newer
[ref] | Edit /etc/snmp/snmpd.conf , removing any references to rocommunity , rwcommunity , or com2sec .
Upon doing that, restart the SNMP service:
$ sudo systemctl restart snmpd
| Rationale: | Earlier versions of SNMP are considered insecure, as they potentially allow
unauthorized access to detailed system management information. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_snmpd_use_newer_protocol | References: | | |
|
Group
SSH Server
Group contains 1 group and 16 rules |
[ref]
The SSH protocol is recommended for remote login and
remote file transfer. SSH provides confidentiality and integrity
for data exchanged between two systems, as well as server
authentication, through the use of public key cryptography. The
implementation included with the system is called OpenSSH, and more
detailed documentation is available from its website,
https://www.openssh.com.
Its server program is called sshd and provided by the RPM package
openssh-server . |
Group
Configure OpenSSH Server if Necessary
Group contains 15 rules |
[ref]
If the system needs to act as an SSH server, then
certain changes should be made to the OpenSSH daemon configuration
file /etc/ssh/sshd_config . The following recommendations can be
applied to this file. See the sshd_config(5) man page for more
detailed information. |
Rule
Disable Host-Based Authentication
[ref] | SSH's cryptographic host-based authentication is
more secure than .rhosts authentication. However, it is
not recommended that hosts unilaterally trust one another, even
within an organization.
The default SSH configuration disables host-based authentication. The appropriate
configuration is used if no value is set for HostbasedAuthentication .
To explicitly disable host-based authentication, add or correct the
following line in
/etc/ssh/sshd_config :
HostbasedAuthentication no
| Rationale: | SSH trust relationships mean a compromise on one host
can allow an attacker to move trivially to other hosts. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_disable_host_auth | References: | cis-csc | 11, 12, 14, 15, 16, 18, 3, 5, 9 | cjis | 5.5.6 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.03, DSS06.06 | cui | 3.1.12 | disa | CCI-000366 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3 | nist | AC-3, AC-17(a), CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-4, PR.AC-6, PR.IP-1, PR.PT-3 | ospp | FIA_UAU.1 | os-srg | SRG-OS-000480-GPOS-00229 | pcidss4 | 8.3.1, 8.3 |
| |
|
Rule
Enable SSH Server firewalld Firewall Exception
[ref] | If the SSH server is in use, inbound connections to SSH's port should be allowed to permit
remote access through SSH. In more restrictive firewalld settings, the SSH port should be
added to the proper firewalld zone in order to allow SSH remote access.
To configure firewalld to allow ssh access, run the following command(s):
firewall-cmd --permanent --add-service=ssh
Then run the following command to load the newly created rule(s):
firewall-cmd --reload
Warning:
The remediation for this rule uses firewall-cmd and nmcli tools.
Therefore, it will only be executed if firewalld and NetworkManager
services are running. Otherwise, the remediation will be aborted and a informative message
will be shown in the remediation report.
These respective services will not be started in order to preserve any intentional change
in network components related to firewall and network interfaces. Warning:
This rule also checks if the SSH port was modified by the administrator in the firewalld
services definitions and is reflecting the expected port number. Although this is checked,
fixing the custom ssh.xml file placed by the administrator at /etc/firewalld/services it
is not in the scope of the remediation since there is no reliable way to manually change
the respective file. If the default SSH port is modified, it is on the administrator
responsibility to ensure the firewalld customizations in the service port level are
properly configured. | Rationale: | If inbound SSH connections are expected, adding the SSH port to the proper firewalld zone
will allow remote access through the SSH port. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_firewalld_sshd_port_enabled | References: | | |
|
Rule
Disable SSH Access via Empty Passwords
[ref] | Disallow SSH login with empty passwords.
The default SSH configuration disables logins with empty passwords. The appropriate
configuration is used if no value is set for PermitEmptyPasswords .
To explicitly disallow SSH login from accounts with empty passwords,
add or correct the following line in
/etc/ssh/sshd_config :
PermitEmptyPasswords no
Any accounts with empty passwords should be disabled immediately, and PAM configuration
should prevent users from being able to assign themselves empty passwords. | Rationale: | Configuring this setting for the SSH daemon provides additional assurance
that remote login via SSH will require a password, even in the event of
misconfiguration elsewhere. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_disable_empty_passwords | References: | cis-csc | 11, 12, 13, 14, 15, 16, 18, 3, 5, 9 | cjis | 5.5.6 | cobit5 | APO01.06, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06 | cui | 3.1.1, 3.1.5 | disa | CCI-000766, CCI-000366 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 5.2, SR 7.6 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nist | AC-17(a), CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-4, PR.AC-6, PR.DS-5, PR.IP-1, PR.PT-3 | ospp | FIA_UAU.1 | pcidss | Req-2.2.4 | os-srg | SRG-OS-000106-GPOS-00053, SRG-OS-000480-GPOS-00229, SRG-OS-000480-GPOS-00227 | stigid | OL08-00-020330 | pcidss4 | 2.2.6, 2.2 | stigref | SV-248714r991589_rule |
| |
|
Rule
Disable GSSAPI Authentication
[ref] | Unless needed, SSH should not permit extraneous or unnecessary
authentication mechanisms like GSSAPI.
The default SSH configuration disallows authentications based on GSSAPI. The appropriate
configuration is used if no value is set for GSSAPIAuthentication .
To explicitly disable GSSAPI authentication, add or correct the following line in
/etc/ssh/sshd_config :
GSSAPIAuthentication no
| Rationale: | GSSAPI authentication is used to provide additional authentication mechanisms to
applications. Allowing GSSAPI authentication through SSH exposes the system's
GSSAPI to remote hosts, increasing the attack surface of the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_disable_gssapi_auth | References: | cis-csc | 11, 3, 9 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05 | cui | 3.1.12 | disa | CCI-000366, CCI-001813 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 7.6 | ism | 0418, 1055, 1402 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4 | nist | CM-7(a), CM-7(b), CM-6(a), AC-17(a) | nist-csf | PR.IP-1 | ospp | FTP_ITC_EXT.1, FCS_SSH_EXT.1.2 | os-srg | SRG-OS-000364-GPOS-00151, SRG-OS-000480-GPOS-00227 | stigid | OL08-00-010522 | stigref | SV-248607r991589_rule |
| |
|
Rule
Disable Kerberos Authentication
[ref] | Unless needed, SSH should not permit extraneous or unnecessary
authentication mechanisms like Kerberos.
The default SSH configuration disallows authentication validation through Kerberos.
The appropriate configuration is used if no value is set for KerberosAuthentication .
To explicitly disable Kerberos authentication, add or correct the following line in
/etc/ssh/sshd_config :
KerberosAuthentication no
| Rationale: | Kerberos authentication for SSH is often implemented using GSSAPI. If Kerberos
is enabled through SSH, the SSH daemon provides a means of access to the
system's Kerberos implementation.
Configuring these settings for the SSH daemon provides additional assurance that remote logon via SSH will not use unused methods of authentication, even in the event of misconfiguration elsewhere. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_disable_kerb_auth | References: | cis-csc | 11, 3, 9 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05 | cui | 3.1.12 | disa | CCI-000366, CCI-001813 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 7.6 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4 | nist | AC-17(a), CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.IP-1 | ospp | FTP_ITC_EXT.1, FCS_SSH_EXT.1.2 | os-srg | SRG-OS-000364-GPOS-00151, SRG-OS-000480-GPOS-00227 | stigid | OL08-00-010521 | stigref | SV-248606r991589_rule |
| |
|
Rule
Disable SSH Support for .rhosts Files
[ref] | SSH can emulate the behavior of the obsolete rsh
command in allowing users to enable insecure access to their
accounts via .rhosts files.
The default SSH configuration disables support for .rhosts . The appropriate
configuration is used if no value is set for IgnoreRhosts .
To explicitly disable support for .rhosts files, add or correct the following line in
/etc/ssh/sshd_config :
IgnoreRhosts yes
| Rationale: | SSH trust relationships mean a compromise on one host
can allow an attacker to move trivially to other hosts. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_disable_rhosts | References: | cis-csc | 11, 12, 14, 15, 16, 18, 3, 5, 9 | cjis | 5.5.6 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.03, DSS06.06 | cui | 3.1.12 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nist | AC-17(a), CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-4, PR.AC-6, PR.IP-1, PR.PT-3 | os-srg | SRG-OS-000480-GPOS-00227 | pcidss4 | 2.2.6, 2.2 |
| |
|
Rule
Disable SSH Root Login
[ref] | The root user should never be allowed to login to a
system directly over a network.
To disable root login via SSH, add or correct the following line in
/etc/ssh/sshd_config :
PermitRootLogin no
| Rationale: | Even though the communications channel may be encrypted, an additional layer of
security is gained by extending the policy of not logging directly on as root.
In addition, logging in with a user-specific account provides individual
accountability of actions performed on the system and also helps to minimize
direct attack attempts on root's password. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_disable_root_login | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 3, 5 | cjis | 5.5.6 | cobit5 | APO01.06, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.02, DSS06.03, DSS06.06, DSS06.10 | cui | 3.1.1, 3.1.5 | disa | CCI-000366, CCI-004045 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.18.1.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3 | nist | AC-6(2), AC-17(a), IA-2, IA-2(5), CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.DS-5, PR.PT-3 | ospp | FAU_GEN.1 | pcidss | Req-2.2.4 | os-srg | SRG-OS-000109-GPOS-00056, SRG-OS-000480-GPOS-00227 | app-srg-ctr | SRG-APP-000148-CTR-000335, SRG-APP-000190-CTR-000500 | stigid | OL08-00-010550 | anssi | R33 | pcidss4 | 2.2.6, 2.2 | stigref | SV-248613r1015039_rule |
| |
|
Rule
Disable SSH Support for User Known Hosts
[ref] | SSH can allow system users to connect to systems if a cache of the remote
systems public keys is available. This should be disabled.
To ensure this behavior is disabled, add or correct the following line in
/etc/ssh/sshd_config :
IgnoreUserKnownHosts yes
| Rationale: | Configuring this setting for the SSH daemon provides additional
assurance that remote login via SSH will require a password, even
in the event of misconfiguration elsewhere. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_disable_user_known_hosts | References: | cis-csc | 11, 3, 9 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05 | cui | 3.1.12 | disa | CCI-000366 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4 | nist | AC-17(a), CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.IP-1 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-010520 | stigref | SV-248605r991589_rule |
| |
|
Rule
Disable X11 Forwarding
[ref] | The X11Forwarding parameter provides the ability to tunnel X11 traffic
through the connection to enable remote graphic connections.
SSH has the capability to encrypt remote X11 connections when SSH's
X11Forwarding option is enabled.
The default SSH configuration disables X11Forwarding. The appropriate
configuration is used if no value is set for X11Forwarding .
To explicitly disable X11 Forwarding, add or correct the following line in
/etc/ssh/sshd_config :
X11Forwarding no
| Rationale: | Disable X11 forwarding unless there is an operational requirement to use X11
applications directly. There is a small risk that the remote X11 servers of
users who are logged in via SSH with X11 forwarding could be compromised by
other users on the X11 server. Note that even if X11 forwarding is disabled,
users can always install their own forwarders. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_disable_x11_forwarding | References: | | |
|
Rule
Do Not Allow SSH Environment Options
[ref] | Ensure that users are not able to override environment variables of the SSH daemon.
The default SSH configuration disables environment processing. The appropriate
configuration is used if no value is set for PermitUserEnvironment .
To explicitly disable Environment options, add or correct the following
/etc/ssh/sshd_config :
PermitUserEnvironment no
| Rationale: | SSH environment options potentially allow users to bypass
access restriction in some configurations. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_do_not_permit_user_env | References: | cis-csc | 11, 3, 9 | cjis | 5.5.6 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05 | cui | 3.1.12 | disa | CCI-000366 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4 | nist | AC-17(a), CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.IP-1 | pcidss | Req-2.2.4 | os-srg | SRG-OS-000480-GPOS-00229 | stigid | OL08-00-010830 | pcidss4 | 2.2.6, 2.2 | stigref | SV-248650r991591_rule |
| |
|
Rule
Enable Use of Strict Mode Checking
[ref] | SSHs StrictModes option checks file and ownership permissions in
the user's home directory .ssh folder before accepting login. If world-
writable permissions are found, logon is rejected.
The default SSH configuration has StrictModes enabled. The appropriate
configuration is used if no value is set for StrictModes .
To explicitly enable StrictModes in SSH, add or correct the following line in
/etc/ssh/sshd_config :
StrictModes yes
| Rationale: | If other users have access to modify user-specific SSH configuration files, they
may be able to log into the system as another user. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_enable_strictmodes | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | cui | 3.1.12 | disa | CCI-000366 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | AC-6, AC-17(a), CM-6(a) | nist-csf | PR.AC-4, PR.DS-5 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-010500 | stigref | SV-248603r991589_rule |
| |
|
Rule
Enable SSH Warning Banner
[ref] | To enable the warning banner and ensure it is consistent
across the system, add or correct the following line in
/etc/ssh/sshd_config :
Banner /etc/issue
Another section contains information on how to create an
appropriate system-wide warning banner. | Rationale: | The warning message reinforces policy awareness during the logon process and
facilitates possible legal action against attackers. Alternatively, systems
whose ownership should not be obvious should ensure usage of a banner that does
not provide easy attribution. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_enable_warning_banner | References: | cis-csc | 1, 12, 15, 16 | cjis | 5.5.6 | cobit5 | DSS05.04, DSS05.10, DSS06.10 | cui | 3.1.9 | disa | CCI-001387, CCI-001384, CCI-000048, CCI-001386, CCI-001388, CCI-001385 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3 | nist | AC-8(a), AC-8(c), AC-17(a), CM-6(a) | nist-csf | PR.AC-7 | ospp | FTA_TAB.1 | pcidss | Req-2.2.4 | os-srg | SRG-OS-000023-GPOS-00006, SRG-OS-000228-GPOS-00088 | stigid | OL08-00-010040 | stigref | SV-248526r958390_rule |
| |
|
Rule
Enable SSH Print Last Log
[ref] | Ensure that SSH will display the date and time of the last successful account logon.
The default SSH configuration enables print of the date and time of the last login.
The appropriate configuration is used if no value is set for PrintLastLog .
To explicitly enable LastLog in SSH, add or correct the following line in
/etc/ssh/sshd_config :
PrintLastLog yes
| Rationale: | Providing users feedback on when account accesses last occurred facilitates user
recognition and reporting of unauthorized account use. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_print_last_log | References: | cis-csc | 1, 12, 15, 16 | cobit5 | DSS05.04, DSS05.10, DSS06.10 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3 | nist | AC-9, AC-9(1) | nist-csf | PR.AC-7 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-020350 | stigref | SV-248718r991589_rule |
| |
|
Rule
Set LogLevel to INFO
[ref] | The INFO parameter specifices that record login and logout activity will be logged.
The default SSH configuration sets the log level to INFO. The appropriate
configuration is used if no value is set for LogLevel .
To explicitly specify the log level in SSH, add or correct the following line in
/etc/ssh/sshd_config :
LogLevel INFO
| Rationale: | SSH provides several logging levels with varying amounts of verbosity. DEBUG is specifically
not recommended other than strictly for debugging SSH communications since it provides
so much data that it is difficult to identify important security information. INFO level is the
basic level that only records login activity of SSH users. In many situations, such as Incident
Response, it is important to determine when a particular user was active on a system. The
logout record can eliminate those users who disconnected, which helps narrow the field. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_set_loglevel_info | References: | | |
|
Rule
Set SSH authentication attempt limit
[ref] | The MaxAuthTries parameter specifies the maximum number of authentication attempts
permitted per connection. Once the number of failures reaches half this value, additional failures are logged.
to set MaxAUthTries edit /etc/ssh/sshd_config as follows:
MaxAuthTries 5
| Rationale: | Setting the MaxAuthTries parameter to a low number will minimize the risk of successful
brute force attacks to the SSH server. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sshd_set_max_auth_tries | References: | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | pcidss4 | 2.2.6, 2.2 |
| |
|
Rule
Verify Permissions on SSH Server Private *_key Key Files
[ref] | SSH server private keys - files that match the /etc/ssh/*_key glob, have to have restricted permissions.
If those files are owned by the root user and the root group, they have to have the 0600 permission or stricter.
If they are owned by the root user, but by a dedicated group ssh_keys , they can have the 0640 permission or stricter. Warning:
Remediation is not possible at bootable container build time because SSH host
keys are generated post-deployment. | Rationale: | If an unauthorized user obtains the private SSH host key file, the host could be
impersonated. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_sshd_private_key | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | cui | 3.1.13, 3.13.10 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | AC-17(a), CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | pcidss | Req-2.2.4 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | OL08-00-010490 | anssi | R50 | pcidss4 | 2.2.6, 2.2 | stigref | SV-248602r991589_rule |
| |
|
Group
System Security Services Daemon
Group contains 1 rule |
|
Rule
Enable Smartcards in SSSD
[ref] | SSSD should be configured to authenticate access to the system using smart cards.
To enable smart cards in SSSD, set pam_cert_auth to True under the
[pam] section in /etc/sssd/sssd.conf . For example:
[pam]
pam_cert_auth = True
Add or update "pam_sss.so" line in auth section of "/etc/pam.d/system-auth" file to include
"try_cert_auth" or "require_cert_auth" option, like in the following example:
/etc/pam.d/system-auth:auth [success=done authinfo_unavail=ignore ignore=ignore default=die] pam_sss.so try_cert_auth
Also add or update "pam_sss.so" line in auth section of "/etc/pam.d/smartcard-auth" file to
include the "allow_missing_name" option, like in the following example:
/etc/pam.d/smartcard-auth:auth sufficient pam_sss.so allow_missing_name
| Rationale: | Using an authentication device, such as a CAC or token that is separate from
the information system, ensures that even if the information system is
compromised, that compromise will not affect credentials stored on the
authentication device.
Multi-Factor Authentication (MFA) solutions that require devices separate from
information systems gaining access include, for example, hardware tokens
providing time-based or challenge-response authenticators and smart cards such
as the U.S. Government Personal Identity Verification card and the DoD Common
Access Card. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sssd_enable_smartcards | References: | disa | CCI-000765, CCI-004047, CCI-004046 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | pcidss | Req-8.3 | os-srg | SRG-OS-000375-GPOS-00160, SRG-OS-000105-GPOS-00052, SRG-OS-000106-GPOS-00053, SRG-OS-000107-GPOS-00054, SRG-OS-000108-GPOS-00055 | stigid | OL08-00-020250 | stigref | SV-248702r1015060_rule |
| |
|
Group
USBGuard daemon
Group contains 2 rules |
[ref]
The USBGuard daemon enforces the USB device authorization policy for all USB devices. |
Rule
Install usbguard Package
[ref] |
The usbguard package can be installed with the following command:
$ sudo yum install usbguard
| Rationale: | usbguard is a software framework that helps to protect
against rogue USB devices by implementing basic whitelisting/blacklisting
capabilities based on USB device attributes.
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_usbguard_installed | References: | | |
|
Rule
Enable the USBGuard Service
[ref] | The USBGuard service should be enabled.
The usbguard service can be enabled with the following command:
$ sudo systemctl enable usbguard.service
| Rationale: | The usbguard service must be running in order to
enforce the USB device authorization policy for all USB devices. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_usbguard_enabled | References: | | |
|
Group
System Accounting with auditd
Group contains 10 groups and 32 rules |
[ref]
The audit service provides substantial capabilities
for recording system activities. By default, the service audits about
SELinux AVC denials and certain types of security-relevant events
such as system logins, account modifications, and authentication
events performed by programs such as sudo.
Under its default configuration, auditd has modest disk space
requirements, and should not noticeably impact system performance.
NOTE: The Linux Audit daemon auditd can be configured to use
the augenrules program to read audit rules files ( *.rules )
located in /etc/audit/rules.d location and compile them to create
the resulting form of the /etc/audit/audit.rules configuration file
during the daemon startup (default configuration). Alternatively, the auditd
daemon can use the auditctl utility to read audit rules from the
/etc/audit/audit.rules configuration file during daemon startup,
and load them into the kernel. The expected behavior is configured via the
appropriate ExecStartPost directive setting in the
/usr/lib/systemd/system/auditd.service configuration file.
To instruct the auditd daemon to use the augenrules program
to read audit rules (default configuration), use the following setting:
ExecStartPost=-/sbin/augenrules --load
in the /usr/lib/systemd/system/auditd.service configuration file.
In order to instruct the auditd daemon to use the auditctl
utility to read audit rules, use the following setting:
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules
in the /usr/lib/systemd/system/auditd.service configuration file.
Refer to [Service] section of the /usr/lib/systemd/system/auditd.service
configuration file for further details.
Government networks often have substantial auditing
requirements and auditd can be configured to meet these
requirements.
Examining some example audit records demonstrates how the Linux audit system
satisfies common requirements.
The following example from Red Hat Enterprise Linux 7 Documentation available at
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/selinux_users_and_administrators_guide/index#sect-Security-Enhanced_Linux-Fixing_Problems-Raw_Audit_Messages
shows the substantial amount of information captured in a
two typical "raw" audit messages, followed by a breakdown of the most important
fields. In this example the message is SELinux-related and reports an AVC
denial (and the associated system call) that occurred when the Apache HTTP
Server attempted to access the /var/www/html/file1 file (labeled with
the samba_share_t type):
type=AVC msg=audit(1226874073.147:96): avc: denied { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file
type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
msg=audit(1226874073.147:96) - The number in parentheses is the unformatted time stamp (Epoch time)
for the event, which can be converted to standard time by using the
date command.
{ getattr } - The item in braces indicates the permission that was denied.
getattr
indicates the source process was trying to read the target file's status information.
This occurs before reading files. This action is denied due to the file being
accessed having the wrong label. Commonly seen permissions include getattr ,
read , and write .
comm="httpd" - The executable that launched the process. The full path of the executable is
found in the
exe= section of the system call (SYSCALL ) message,
which in this case, is exe="/usr/sbin/httpd" .
path="/var/www/html/file1" - The path to the object (target) the process attempted to access.
scontext="unconfined_u:system_r:httpd_t:s0" - The SELinux context of the process that attempted the denied action. In
this case, it is the SELinux context of the Apache HTTP Server, which is running
in the
httpd_t domain.
tcontext="unconfined_u:object_r:samba_share_t:s0" - The SELinux context of the object (target) the process attempted to access.
In this case, it is the SELinux context of
file1 . Note: the samba_share_t
type is not accessible to processes running in the httpd_t domain.
- From the system call (
SYSCALL ) message, two items are of interest:
success=no : indicates whether the denial (AVC) was enforced or not.
success=no indicates the system call was not successful (SELinux denied
access). success=yes indicates the system call was successful - this can
be seen for permissive domains or unconfined domains, such as initrc_t
and kernel_t .
exe="/usr/sbin/httpd" : the full path to the executable that launched
the process, which in this case, is exe="/usr/sbin/httpd" .
|
Group
Configure auditd Rules for Comprehensive Auditing
Group contains 7 groups and 23 rules |
[ref]
The auditd program can perform comprehensive
monitoring of system activity. This section describes recommended
configuration settings for comprehensive auditing, but a full
description of the auditing system's capabilities is beyond the
scope of this guide. The mailing list linux-audit@redhat.com exists
to facilitate community discussion of the auditing system.
The audit subsystem supports extensive collection of events, including:
- Tracing of arbitrary system calls (identified by name or number)
on entry or exit.
- Filtering by PID, UID, call success, system call argument (with
some limitations), etc.
- Monitoring of specific files for modifications to the file's
contents or metadata.
Auditing rules at startup are controlled by the file /etc/audit/audit.rules .
Add rules to it to meet the auditing requirements for your organization.
Each line in /etc/audit/audit.rules represents a series of arguments
that can be passed to auditctl and can be individually tested
during runtime. See documentation in /usr/share/doc/audit-VERSION
and
in the related man pages for more details.
If copying any example audit rulesets from /usr/share/doc/audit-VERSION ,
be sure to comment out the
lines containing arch= which are not appropriate for your system's
architecture. Then review and understand the following rules,
ensuring rules are activated as needed for the appropriate
architecture.
After reviewing all the rules, reading the following sections, and
editing as needed, the new rules can be activated as follows:
$ sudo service auditd restart
|
Group
Record Events that Modify the System's Discretionary Access Controls
Group contains 2 rules |
[ref]
At a minimum, the audit system should collect file permission
changes for all users and root. Note that the "-F arch=b32" lines should be
present even on a 64 bit system. These commands identify system calls for
auditing. Even if the system is 64 bit it can still execute 32 bit system
calls. Additionally, these rules can be configured in a number of ways while
still achieving the desired effect. An example of this is that the "-S" calls
could be split up and placed on separate lines, however, this is less efficient.
Add the following to /etc/audit/audit.rules :
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If your system is 64 bit then these lines should be duplicated and the
arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
|
Rule
Record Events that Modify the System's Discretionary Access Controls - chmod
[ref] | At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient. | Rationale: | The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_chmod | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.5.5 | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203 | app-srg-ctr | SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255 | stigid | OL08-00-030490 | anssi | R73 | pcidss4 | 10.3.4, 10.3 | stigref | SV-248791r958412_rule |
| Remediation Shell script ⇲# Remediation is applicable only in certain platforms
if rpm --quiet -q audit && rpm --quiet -q kernel || rpm --quiet -q kernel-uek && { ! ( grep -q aarch64 /proc/sys/kernel/osrelease ); }; then
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
OTHER_FILTERS=""
AUID_FILTERS="-F auid>=1000 -F auid!=unset"
SYSCALL="chmod"
KEY="perm_mod"
SYSCALL_GROUPING="chmod fchmod fchmodat"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
default_file="/etc/audit/rules.d/$KEY.rules"
# As other_filters may include paths, lets use a different delimiter for it
# The "F" script expression tells sed to print the filenames where the expressions matched
readarray -t files_to_inspect < <(sed -s -n -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" -e "F" /etc/audit/rules.d/*.rules)
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
file_to_inspect="/etc/audit/rules.d/$KEY.rules"
files_to_inspect=("$file_to_inspect")
if [ ! -e "$file_to_inspect" ]
then
touch "$file_to_inspect"
chmod 0600 "$file_to_inspect"
fi
fi
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
default_file="/etc/audit/audit.rules"
files_to_inspect+=('/etc/audit/audit.rules' )
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
done
else
>&2 echo 'Remediation is not applicable, nothing was done'
fi
Remediation Ansible snippet ⇲Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
- name: Gather the package facts
package_facts:
manager: auto
tags:
- CJIS-5.4.1.1
- DISA-STIG-OL08-00-030490
- NIST-800-171-3.1.7
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_chmod
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Set architecture for audit chmod tasks
set_fact:
audit_arch: b64
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- not ( ansible_architecture == "aarch64" )
- ansible_architecture == "aarch64" or ansible_architecture == "ppc64" or ansible_architecture
== "ppc64le" or ansible_architecture == "s390x" or ansible_architecture == "x86_64"
tags:
- CJIS-5.4.1.1
- DISA-STIG-OL08-00-030490
- NIST-800-171-3.1.7
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_chmod
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for chmod for 32bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- chmod
syscall_grouping:
- chmod
- fchmod
- fchmodat
- name: Check existence of chmod in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/perm_mod.rules
set_fact: audit_file="/etc/audit/rules.d/perm_mod.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- chmod
syscall_grouping:
- chmod
- fchmod
- fchmodat
- name: Check existence of chmod in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- not ( ansible_architecture == "aarch64" )
tags:
- CJIS-5.4.1.1
- DISA-STIG-OL08-00-030490
- NIST-800-171-3.1.7
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_chmod
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for chmod for 64bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- chmod
syscall_grouping:
- chmod
- fchmod
- fchmodat
- name: Check existence of chmod in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/perm_mod.rules
set_fact: audit_file="/etc/audit/rules.d/perm_mod.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- chmod
syscall_grouping:
- chmod
- fchmod
- fchmodat
- name: Check existence of chmod in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- not ( ansible_architecture == "aarch64" )
- audit_arch == "b64"
tags:
- CJIS-5.4.1.1
- DISA-STIG-OL08-00-030490
- NIST-800-171-3.1.7
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_chmod
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
|
|
Rule
Record Events that Modify the System's Discretionary Access Controls - chown
[ref] | At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient. | Rationale: | The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_chown | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.5.5 | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219 | app-srg-ctr | SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255 | stigid | OL08-00-030480 | anssi | R73 | pcidss4 | 10.3.4, 10.3 | stigref | SV-248790r958412_rule |
| Remediation Shell script ⇲# Remediation is applicable only in certain platforms
if rpm --quiet -q audit && rpm --quiet -q kernel || rpm --quiet -q kernel-uek && { ! ( grep -q aarch64 /proc/sys/kernel/osrelease ); }; then
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
OTHER_FILTERS=""
AUID_FILTERS="-F auid>=1000 -F auid!=unset"
SYSCALL="chown"
KEY="perm_mod"
SYSCALL_GROUPING="chown fchown fchownat lchown"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
default_file="/etc/audit/rules.d/$KEY.rules"
# As other_filters may include paths, lets use a different delimiter for it
# The "F" script expression tells sed to print the filenames where the expressions matched
readarray -t files_to_inspect < <(sed -s -n -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" -e "F" /etc/audit/rules.d/*.rules)
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
file_to_inspect="/etc/audit/rules.d/$KEY.rules"
files_to_inspect=("$file_to_inspect")
if [ ! -e "$file_to_inspect" ]
then
touch "$file_to_inspect"
chmod 0600 "$file_to_inspect"
fi
fi
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
default_file="/etc/audit/audit.rules"
files_to_inspect+=('/etc/audit/audit.rules' )
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
done
else
>&2 echo 'Remediation is not applicable, nothing was done'
fi
Remediation Ansible snippet ⇲Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
- name: Gather the package facts
package_facts:
manager: auto
tags:
- CJIS-5.4.1.1
- DISA-STIG-OL08-00-030480
- NIST-800-171-3.1.7
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_chown
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Set architecture for audit chown tasks
set_fact:
audit_arch: b64
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- not ( ansible_architecture == "aarch64" )
- ansible_architecture == "aarch64" or ansible_architecture == "ppc64" or ansible_architecture
== "ppc64le" or ansible_architecture == "s390x" or ansible_architecture == "x86_64"
tags:
- CJIS-5.4.1.1
- DISA-STIG-OL08-00-030480
- NIST-800-171-3.1.7
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_chown
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for chown for 32bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- chown
syscall_grouping:
- chown
- fchown
- fchownat
- lchown
- name: Check existence of chown in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/perm_mod.rules
set_fact: audit_file="/etc/audit/rules.d/perm_mod.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- chown
syscall_grouping:
- chown
- fchown
- fchownat
- lchown
- name: Check existence of chown in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- not ( ansible_architecture == "aarch64" )
tags:
- CJIS-5.4.1.1
- DISA-STIG-OL08-00-030480
- NIST-800-171-3.1.7
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_chown
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for chown for 64bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- chown
syscall_grouping:
- chown
- fchown
- fchownat
- lchown
- name: Check existence of chown in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/perm_mod.rules
set_fact: audit_file="/etc/audit/rules.d/perm_mod.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- chown
syscall_grouping:
- chown
- fchown
- fchownat
- lchown
- name: Check existence of chown in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- not ( ansible_architecture == "aarch64" )
- audit_arch == "b64"
tags:
- CJIS-5.4.1.1
- DISA-STIG-OL08-00-030480
- NIST-800-171-3.1.7
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_chown
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
|
|
Group
Record Execution Attempts to Run SELinux Privileged Commands
Group contains 6 rules |
[ref]
At a minimum, the audit system should collect the execution of
SELinux privileged commands for all users and root. |
Rule
Record Any Attempts to Run chcon
[ref] | At a minimum, the audit system should collect any execution attempt
of the chcon command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F path=/usr/bin/chcon -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file:
-a always,exit -F path=/usr/bin/chcon -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
| Rationale: | Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks,
which attempt to subvert their normal role of providing some necessary but
limited capability. As such, motivation exists to monitor these programs for
unusual activity. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_execution_chcon | References: | cis-csc | 1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2 | iso27001-2013 | A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.PT-1 | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000468-GPOS-00212, SRG-OS-000471-GPOS-00215, SRG-OS-000463-GPOS-00207, SRG-OS-000465-GPOS-00209 | app-srg-ctr | SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270 | stigid | OL08-00-030260 | stigref | SV-248754r958412_rule |
| |
|
Rule
Record Any Attempts to Run restorecon
[ref] | At a minimum, the audit system should collect any execution attempt
of the restorecon command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F path=/usr/sbin/restorecon -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/restorecon -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
| Rationale: | Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks,
which attempt to subvert their normal role of providing some necessary but
limited capability. As such, motivation exists to monitor these programs for
unusual activity. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_execution_restorecon | References: | cis-csc | 1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2 | iso27001-2013 | A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.PT-1 | os-srg | SRG-OS-000392-GPOS-00172, SRG-OS-000463-GPOS-00207, SRG-OS-000465-GPOS-00209 |
| |
|
Rule
Record Any Attempts to Run semanage
[ref] | At a minimum, the audit system should collect any execution attempt
of the semanage command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F path=/usr/sbin/semanage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/semanage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
| Rationale: | Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks,
which attempt to subvert their normal role of providing some necessary but
limited capability. As such, motivation exists to monitor these programs for
unusual activity. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_execution_semanage | References: | cis-csc | 1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2 | iso27001-2013 | A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2 | nerc-cip | CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3 | nist | AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.PT-1 | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000463-GPOS-00207, SRG-OS-000465-GPOS-00209 | app-srg-ctr | SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250 | stigid | OL08-00-030313 | stigref | SV-248764r958442_rule |
| |
|
Rule
Record Any Attempts to Run setfiles
[ref] | At a minimum, the audit system should collect any execution attempt
of the setfiles command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F path=/usr/sbin/setfiles -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/setfiles -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
| Rationale: | Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks,
which attempt to subvert their normal role of providing some necessary but
limited capability. As such, motivation exists to monitor these programs for
unusual activity. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_execution_setfiles | References: | disa | CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000463-GPOS-00207, SRG-OS-000465-GPOS-00209 | app-srg-ctr | SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250 | stigid | OL08-00-030314 | stigref | SV-248765r958442_rule |
| |
|
Rule
Record Any Attempts to Run setsebool
[ref] | At a minimum, the audit system should collect any execution attempt
of the setsebool command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F path=/usr/sbin/setsebool -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/setsebool -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
| Rationale: | Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks,
which attempt to subvert their normal role of providing some necessary but
limited capability. As such, motivation exists to monitor these programs for
unusual activity. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_execution_setsebool | References: | cis-csc | 1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2 | iso27001-2013 | A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.PT-1 | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000463-GPOS-00207, SRG-OS-000465-GPOS-00209 | app-srg-ctr | SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250 | stigid | OL08-00-030316 | stigref | SV-248767r958412_rule |
| |
|
Rule
Record Any Attempts to Run seunshare
[ref] | At a minimum, the audit system should collect any execution attempt
of the seunshare command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F path=/usr/sbin/seunshare -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/seunshare -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
| Rationale: | Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks,
which attempt to subvert their normal role of providing some necessary but
limited capability. As such, motivation exists to monitor these programs for
unusual activity. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_execution_seunshare | References: | disa | CCI-000172 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) |
| |
|
Group
Record Unauthorized Access Attempts Events to Files (unsuccessful)
Group contains 1 rule |
[ref]
At a minimum, the audit system should collect unauthorized file
accesses for all users and root. Note that the "-F arch=b32" lines should be
present even on a 64 bit system. These commands identify system calls for
auditing. Even if the system is 64 bit it can still execute 32 bit system
calls. Additionally, these rules can be configured in a number of ways while
still achieving the desired effect. An example of this is that the "-S" calls
could be split up and placed on separate lines, however, this is less efficient.
Add the following to /etc/audit/audit.rules :
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If your system is 64 bit then these lines should be duplicated and the
arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
|
Rule
Ensure auditd Collects Unauthorized Access Attempts to Files (unsuccessful)
[ref] | At a minimum the audit system should collect unauthorized file
accesses for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
Warning:
This rule checks for multiple syscalls related to unsuccessful file modification;
it was written with DISA STIG in mind. Other policies should use a
separate rule for each syscall that needs to be checked. For example:
audit_rules_unsuccessful_file_modification_open audit_rules_unsuccessful_file_modification_ftruncate audit_rules_unsuccessful_file_modification_creat
| Rationale: | Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing
these events could serve as evidence of potential system compromise. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_unsuccessful_file_modification | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-002884 | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | ism | 0582, 0584, 05885, 0586, 0846, 0957 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.2.4, Req-10.2.1 |
| |
|
Group
Record Information on Kernel Modules Loading and Unloading
Group contains 1 rule |
[ref]
To capture kernel module loading and unloading events, use following lines, setting ARCH to
either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S init_module,delete_module -F key=modules
Place to add the lines depends on a way auditd daemon is configured. If it is configured
to use the augenrules program (the default), add the lines to a file with suffix
.rules in the directory /etc/audit/rules.d .
If the auditd daemon is configured to use the auditctl utility,
add the lines to file /etc/audit/audit.rules . |
Rule
Ensure auditd Collects Information on Kernel Module Loading and Unloading
[ref] | To capture kernel module loading and unloading events, use following lines, setting ARCH to
either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S init_module,finit_module,delete_module -F auid>=1000 -F auid!=unset -F key=modules
The place to add the lines depends on a way auditd daemon is configured. If it is configured
to use the augenrules program (the default), add the lines to a file with suffix
.rules in the directory /etc/audit/rules.d .
If the auditd daemon is configured to use the auditctl utility,
add the lines to file /etc/audit/audit.rules . | Rationale: | The addition/removal of kernel modules can be used to alter the behavior of
the kernel and potentially introduce malicious code into kernel space. It is important
to have an audit trail of modules that have been introduced into the kernel. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_kernel_module_loading | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172 | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.2.7 |
| Remediation Shell script ⇲# Remediation is applicable only in certain platforms
if rpm --quiet -q audit && rpm --quiet -q kernel || rpm --quiet -q kernel-uek; then
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
# Note: 32-bit and 64-bit kernel syscall numbers not always line up =>
# it's required on a 64-bit system to check also for the presence
# of 32-bit's equivalent of the corresponding rule.
# (See `man 7 audit.rules` for details )
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
OTHER_FILTERS=""
AUID_FILTERS="-F auid>=1000 -F auid!=unset"
SYSCALL="init_module finit_module delete_module"
KEY="modules"
SYSCALL_GROUPING="init_module finit_module delete_module"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
default_file="/etc/audit/rules.d/$KEY.rules"
# As other_filters may include paths, lets use a different delimiter for it
# The "F" script expression tells sed to print the filenames where the expressions matched
readarray -t files_to_inspect < <(sed -s -n -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" -e "F" /etc/audit/rules.d/*.rules)
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
file_to_inspect="/etc/audit/rules.d/$KEY.rules"
files_to_inspect=("$file_to_inspect")
if [ ! -e "$file_to_inspect" ]
then
touch "$file_to_inspect"
chmod 0600 "$file_to_inspect"
fi
fi
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
default_file="/etc/audit/audit.rules"
files_to_inspect+=('/etc/audit/audit.rules' )
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
done
else
>&2 echo 'Remediation is not applicable, nothing was done'
fi
Remediation Ansible snippet ⇲Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
- name: Gather the package facts
package_facts:
manager: auto
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.2.7
- audit_rules_kernel_module_loading
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Set architecture for audit tasks
set_fact:
audit_arch: b64
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- ansible_architecture == "aarch64" or ansible_architecture == "ppc64" or ansible_architecture
== "ppc64le" or ansible_architecture == "s390x" or ansible_architecture == "x86_64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.2.7
- audit_rules_kernel_module_loading
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for kernel module loading for 32bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- init_module
- delete_module
- finit_module
syscall_grouping:
- init_module
- delete_module
- finit_module
- name: Check existence of init_module, delete_module, finit_module in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/modules.rules
set_fact: audit_file="/etc/audit/rules.d/modules.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=modules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- init_module
- delete_module
- finit_module
syscall_grouping:
- init_module
- delete_module
- finit_module
- name: Check existence of init_module, delete_module, finit_module in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=modules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.2.7
- audit_rules_kernel_module_loading
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for kernel module loading for 64bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- init_module
- delete_module
- finit_module
syscall_grouping:
- init_module
- delete_module
- finit_module
- name: Check existence of init_module, delete_module, finit_module in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/modules.rules
set_fact: audit_file="/etc/audit/rules.d/modules.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=modules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- init_module
- delete_module
- finit_module
syscall_grouping:
- init_module
- delete_module
- finit_module
- name: Check existence of init_module, delete_module, finit_module in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=modules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- audit_arch == "b64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.2.7
- audit_rules_kernel_module_loading
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
|
|
Group
Record Attempts to Alter Logon and Logout Events
Group contains 3 rules |
[ref]
The audit system already collects login information for all users
and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
-w /var/log/faillock -p wa -k logins
-w /var/log/lastlog -p wa -k logins
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for unattempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
-w /var/log/faillock -p wa -k logins
-w /var/log/lastlog -p wa -k logins
|
Rule
Record Attempts to Alter Logon and Logout Events - faillock
[ref] | The audit system already collects login information for all users
and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing logon events:
-w /var/log/faillock -p wa -k logins
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for unattempted manual
edits of files involved in storing logon events:
-w /var/log/faillock -p wa -k logins
| Rationale: | Manual editing of these files may indicate nefarious activity, such
as an attacker attempting to remove evidence of an intrusion. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_login_events_faillock | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.2.3 | os-srg | SRG-OS-000392-GPOS-00172, SRG-OS-000470-GPOS-00214, SRG-OS-000473-GPOS-00218 | app-srg-ctr | SRG-APP-000503-CTR-001275, SRG-APP-000506-CTR-001290 | stigid | OL08-00-030590 | anssi | R73 | pcidss4 | 10.2.1.3, 10.2.1, 10.2 | stigref | SV-248801r958412_rule |
| |
|
Rule
Record Attempts to Alter Logon and Logout Events - lastlog
[ref] | The audit system already collects login information for all users
and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing logon events:
-w /var/log/lastlog -p wa -k logins
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for unattempted manual
edits of files involved in storing logon events:
-w /var/log/lastlog -p wa -k logins
| Rationale: | Manual editing of these files may indicate nefarious activity, such
as an attacker attempting to remove evidence of an intrusion. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_login_events_lastlog | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.2.3 | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000473-GPOS-00218, SRG-OS-000470-GPOS-00214 | app-srg-ctr | SRG-APP-000495-CTR-001235, SRG-APP-000503-CTR-001275, SRG-APP-000506-CTR-001290 | stigid | OL08-00-030600 | anssi | R73 | pcidss4 | 10.2.1.3, 10.2.1, 10.2 | stigref | SV-248802r958412_rule |
| |
|
Rule
Record Attempts to Alter Logon and Logout Events - tallylog
[ref] | The audit system already collects login information for all users
and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for unattempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
| Rationale: | Manual editing of these files may indicate nefarious activity, such
as an attacker attempting to remove evidence of an intrusion. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_login_events_tallylog | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000172, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.2.3 | os-srg | SRG-OS-000392-GPOS-00172, SRG-OS-000470-GPOS-00214, SRG-OS-000473-GPOS-00218 | app-srg-ctr | SRG-APP-000503-CTR-001275 | pcidss4 | 10.2.1.3, 10.2.1, 10.2 |
| |
|
Group
Record Information on the Use of Privileged Commands
Group contains 1 rule |
[ref]
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. |
Rule
Ensure auditd Collects Information on the Use of Privileged Commands
[ref] | The audit system should collect information about usage of privileged commands for all users.
These are commands with suid or sgid bits on and they are specially risky in local block
device partitions not mounted with noexec and nosuid options. Therefore, these partitions
should be first identified by the following command:
findmnt -n -l -k -it $(awk '/nodev/ { print $2 }' /proc/filesystems | paste -sd,) | grep -Pv "noexec|nosuid"
For all partitions listed by the previous command, it is necessary to search for
setuid / setgid programs using the following command:
$ sudo find PARTITION -xdev -perm /6000 -type f 2>/dev/null
For each setuid / setgid program identified by the previous command, an audit rule must be
present in the appropriate place using the following line structure:
-a always,exit -F path=PROG_PATH -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the augenrules program to read
audit rules during daemon startup, add the line to a file with suffix .rules in the
/etc/audit/rules.d directory, replacing the PROG_PATH part with the full path
of that setuid / setgid identified program.
If the auditd daemon is configured to use the auditctl utility instead, add
the line to the /etc/audit/audit.rules file, also replacing the PROG_PATH part
with the full path of that setuid / setgid identified program. Warning:
This rule checks for multiple syscalls related to privileged commands. If needed to check
specific privileged commands, other more specific rules should be considered. For example:
audit_rules_privileged_commands_su audit_rules_privileged_commands_umount audit_rules_privileged_commands_passwd
Warning:
Note that OVAL check and Bash / Ansible remediation of this rule
explicitly excludes file systems mounted at /proc directory
and its subdirectories. It is a virtual file system and it doesn't
contain executable applications. At the same time, interacting with this
file system during check or remediation caused undesirable errors. | Rationale: | Misuse of privileged functions, either intentionally or unintentionally by authorized users,
or by unauthorized external entities that have compromised system accounts, is a serious and
ongoing concern that can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify the
risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert
their normal role of providing some necessary but limited capability. As such, motivation
exists to monitor these programs for unusual activity. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_privileged_commands | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO08.04, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.05, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-002234 | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.5, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.3.4.5.9, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 3.9, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | ism | 0582, 0584, 05885, 0586, 0846, 0957 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.1, A.16.1.2, A.16.1.3, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.3, A.6.2.1, A.6.2.2 | nerc-cip | CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3 | nist | AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-2, DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, DE.DP-4, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, RS.CO-2 | pcidss | Req-10.2.2 | os-srg | SRG-OS-000327-GPOS-00127 | anssi | R73 |
| |
|
Group
Records Events that Modify Date and Time Information
Group contains 5 rules |
[ref]
Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time. All changes to the system
time should be audited. |
Rule
Record attempts to alter time through adjtimex
[ref] | If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be
used for better reporting capability through ausearch and aureport. Multiple
system calls can be defined on the same line to save space if desired, but is
not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
| Rationale: | Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_time_adjtimex | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-001487, CCI-000169 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.4.2.b | anssi | R73 | pcidss4 | 10.6.3, 10.6 |
| Remediation Shell script ⇲# Remediation is applicable only in certain platforms
if rpm --quiet -q audit && rpm --quiet -q kernel || rpm --quiet -q kernel-uek; then
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
# Create expected audit group and audit rule form for particular system call & architecture
if [ ${ARCH} = "b32" ]
then
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
# so append it to the list of time group system calls to be audited
SYSCALL="adjtimex settimeofday stime"
SYSCALL_GROUPING="adjtimex settimeofday stime"
elif [ ${ARCH} = "b64" ]
then
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore don't add it to the list of time group system calls to be audited
SYSCALL="adjtimex settimeofday"
SYSCALL_GROUPING="adjtimex settimeofday"
fi
OTHER_FILTERS=""
AUID_FILTERS=""
KEY="audit_time_rules"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
default_file="/etc/audit/rules.d/$KEY.rules"
# As other_filters may include paths, lets use a different delimiter for it
# The "F" script expression tells sed to print the filenames where the expressions matched
readarray -t files_to_inspect < <(sed -s -n -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" -e "F" /etc/audit/rules.d/*.rules)
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
file_to_inspect="/etc/audit/rules.d/$KEY.rules"
files_to_inspect=("$file_to_inspect")
if [ ! -e "$file_to_inspect" ]
then
touch "$file_to_inspect"
chmod 0600 "$file_to_inspect"
fi
fi
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
default_file="/etc/audit/audit.rules"
files_to_inspect+=('/etc/audit/audit.rules' )
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
done
else
>&2 echo 'Remediation is not applicable, nothing was done'
fi
Remediation Ansible snippet ⇲Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | false |
---|
Strategy: | restrict |
---|
- name: Gather the package facts
package_facts:
manager: auto
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_adjtimex
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Set architecture for audit tasks
set_fact:
audit_arch: b64
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- ansible_architecture == "aarch64" or ansible_architecture == "ppc64" or ansible_architecture
== "ppc64le" or ansible_architecture == "s390x" or ansible_architecture == "x86_64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_adjtimex
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Perform remediation of Audit rules for adjtimex for 32bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- adjtimex
syscall_grouping:
- adjtimex
- settimeofday
- stime
- name: Check existence of adjtimex in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/audit_time_rules.rules
set_fact: audit_file="/etc/audit/rules.d/audit_time_rules.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F key=audit_time_rules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- adjtimex
syscall_grouping:
- adjtimex
- settimeofday
- stime
- name: Check existence of adjtimex in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F key=audit_time_rules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_adjtimex
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Perform remediation of Audit rules for adjtimex for 64bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- adjtimex
syscall_grouping:
- adjtimex
- settimeofday
- name: Check existence of adjtimex in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/audit_time_rules.rules
set_fact: audit_file="/etc/audit/rules.d/audit_time_rules.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F key=audit_time_rules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- adjtimex
syscall_grouping:
- adjtimex
- settimeofday
- stime
- name: Check existence of adjtimex in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F key=audit_time_rules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- audit_arch == "b64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_adjtimex
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
|
|
Rule
Record Attempts to Alter Time Through clock_settime
[ref] | If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
The -k option allows for the specification of a key in string form that can
be used for better reporting capability through ausearch and aureport.
Multiple system calls can be defined on the same line to save space if
desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
| Rationale: | Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_time_clock_settime | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-001487, CCI-000169 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.4.2.b | anssi | R73 | pcidss4 | 10.6.3, 10.6 |
| Remediation Shell script ⇲# Remediation is applicable only in certain platforms
if rpm --quiet -q audit && rpm --quiet -q kernel || rpm --quiet -q kernel-uek; then
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
OTHER_FILTERS="-F a0=0x0"
AUID_FILTERS=""
SYSCALL="clock_settime"
KEY="time-change"
SYSCALL_GROUPING=""
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
default_file="/etc/audit/rules.d/$KEY.rules"
# As other_filters may include paths, lets use a different delimiter for it
# The "F" script expression tells sed to print the filenames where the expressions matched
readarray -t files_to_inspect < <(sed -s -n -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" -e "F" /etc/audit/rules.d/*.rules)
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
file_to_inspect="/etc/audit/rules.d/$KEY.rules"
files_to_inspect=("$file_to_inspect")
if [ ! -e "$file_to_inspect" ]
then
touch "$file_to_inspect"
chmod 0600 "$file_to_inspect"
fi
fi
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
default_file="/etc/audit/audit.rules"
files_to_inspect+=('/etc/audit/audit.rules' )
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
done
else
>&2 echo 'Remediation is not applicable, nothing was done'
fi
Remediation Ansible snippet ⇲Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | false |
---|
Strategy: | restrict |
---|
- name: Gather the package facts
package_facts:
manager: auto
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_clock_settime
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Set architecture for audit tasks
set_fact:
audit_arch: b64
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- ansible_architecture == "aarch64" or ansible_architecture == "ppc64" or ansible_architecture
== "ppc64le" or ansible_architecture == "s390x" or ansible_architecture == "x86_64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_clock_settime
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Perform remediation of Audit rules for clock_settime for 32bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- clock_settime
syscall_grouping: []
- name: Check existence of clock_settime in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F a0=0x0 (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/time-change.rules
set_fact: audit_file="/etc/audit/rules.d/time-change.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F a0=0x0 (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F a0=0x0 -F
key=time-change
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- clock_settime
syscall_grouping: []
- name: Check existence of clock_settime in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F a0=0x0 (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F a0=0x0 (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F a0=0x0 -F
key=time-change
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_clock_settime
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Perform remediation of Audit rules for clock_settime for 64bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- clock_settime
syscall_grouping: []
- name: Check existence of clock_settime in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F a0=0x0 (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/time-change.rules
set_fact: audit_file="/etc/audit/rules.d/time-change.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F a0=0x0 (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F a0=0x0 -F
key=time-change
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- clock_settime
syscall_grouping: []
- name: Check existence of clock_settime in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F a0=0x0 (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F a0=0x0 (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F a0=0x0 -F
key=time-change
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- audit_arch == "b64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_clock_settime
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
|
|
Rule
Record attempts to alter time through settimeofday
[ref] | If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be
used for better reporting capability through ausearch and aureport. Multiple
system calls can be defined on the same line to save space if desired, but is
not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
| Rationale: | Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_time_settimeofday | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-001487, CCI-000169 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.4.2.b | pcidss4 | 10.6.3, 10.6 |
| Remediation Shell script ⇲# Remediation is applicable only in certain platforms
if rpm --quiet -q audit && rpm --quiet -q kernel || rpm --quiet -q kernel-uek; then
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
# Create expected audit group and audit rule form for particular system call & architecture
if [ ${ARCH} = "b32" ]
then
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
# so append it to the list of time group system calls to be audited
SYSCALL="adjtimex settimeofday stime"
SYSCALL_GROUPING="adjtimex settimeofday stime"
elif [ ${ARCH} = "b64" ]
then
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore don't add it to the list of time group system calls to be audited
SYSCALL="adjtimex settimeofday"
SYSCALL_GROUPING="adjtimex settimeofday"
fi
OTHER_FILTERS=""
AUID_FILTERS=""
KEY="audit_time_rules"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
default_file="/etc/audit/rules.d/$KEY.rules"
# As other_filters may include paths, lets use a different delimiter for it
# The "F" script expression tells sed to print the filenames where the expressions matched
readarray -t files_to_inspect < <(sed -s -n -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" -e "F" /etc/audit/rules.d/*.rules)
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
file_to_inspect="/etc/audit/rules.d/$KEY.rules"
files_to_inspect=("$file_to_inspect")
if [ ! -e "$file_to_inspect" ]
then
touch "$file_to_inspect"
chmod 0600 "$file_to_inspect"
fi
fi
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
default_file="/etc/audit/audit.rules"
files_to_inspect+=('/etc/audit/audit.rules' )
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
done
else
>&2 echo 'Remediation is not applicable, nothing was done'
fi
Remediation Ansible snippet ⇲Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | false |
---|
Strategy: | restrict |
---|
- name: Gather the package facts
package_facts:
manager: auto
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_settimeofday
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Set architecture for audit tasks
set_fact:
audit_arch: b64
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- ansible_architecture == "aarch64" or ansible_architecture == "ppc64" or ansible_architecture
== "ppc64le" or ansible_architecture == "s390x" or ansible_architecture == "x86_64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_settimeofday
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Perform remediation of Audit rules for settimeofday for 32bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- settimeofday
syscall_grouping:
- adjtimex
- settimeofday
- stime
- name: Check existence of settimeofday in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/audit_time_rules.rules
set_fact: audit_file="/etc/audit/rules.d/audit_time_rules.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F key=audit_time_rules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- settimeofday
syscall_grouping:
- adjtimex
- settimeofday
- stime
- name: Check existence of settimeofday in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F key=audit_time_rules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_settimeofday
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Perform remediation of Audit rules for settimeofday for 64bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- settimeofday
syscall_grouping:
- adjtimex
- settimeofday
- stime
- name: Check existence of settimeofday in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/audit_time_rules.rules
set_fact: audit_file="/etc/audit/rules.d/audit_time_rules.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F key=audit_time_rules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- settimeofday
syscall_grouping:
- adjtimex
- settimeofday
- stime
- name: Check existence of settimeofday in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F key=audit_time_rules
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- audit_arch == "b64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.4.2.b
- PCI-DSSv4-10.6
- PCI-DSSv4-10.6.3
- audit_rules_time_settimeofday
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
|
|
Rule
Record Attempts to Alter Time Through stime
[ref] | If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit
lookup table, the corresponding "-F arch=b64" form of this rule is not expected
to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule
form itself is sufficient for both 32 bit and 64 bit systems). If the
auditd daemon is configured to use the auditctl utility to
read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit
lookup table, the corresponding "-F arch=b64" form of this rule is not expected
to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule
form itself is sufficient for both 32 bit and 64 bit systems). The -k option
allows for the specification of a key in string form that can be used for
better reporting capability through ausearch and aureport. Multiple system
calls can be defined on the same line to save space if desired, but is not
required. See an example of multiple combined system calls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
| Rationale: | Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_time_stime | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-001487, CCI-000169 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.4.2.b | anssi | R73 | pcidss4 | 10.6.3, 10.6 |
| |
|
Rule
Record Attempts to Alter the localtime File
[ref] | If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the default),
add the following line to a file with suffix .rules in the directory
/etc/audit/rules.d :
-w /etc/localtime -p wa -k audit_time_rules
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-w /etc/localtime -p wa -k audit_time_rules
The -k option allows for the specification of a key in string form that can
be used for better reporting capability through ausearch and aureport and
should always be used. | Rationale: | Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_time_watch_localtime | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-001487, CCI-000169 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.4.2.b | anssi | R73 | pcidss4 | 10.6.3, 10.6 |
| |
|
Rule
Record Events that Modify the System's Network Environment
[ref] | If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d , setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S sethostname,setdomainname -F key=audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S sethostname,setdomainname -F key=audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
| Rationale: | The network environment should not be modified by anything other
than administrator action. Any change to network parameters should be
audited. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_networkconfig_modification | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.5.5 | anssi | R73 | pcidss4 | 10.3.4, 10.3 |
| Remediation Shell script ⇲# Remediation is applicable only in certain platforms
if rpm --quiet -q audit && rpm --quiet -q kernel || rpm --quiet -q kernel-uek; then
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
OTHER_FILTERS=""
AUID_FILTERS=""
SYSCALL="sethostname setdomainname"
KEY="audit_rules_networkconfig_modification"
SYSCALL_GROUPING="sethostname setdomainname"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
default_file="/etc/audit/rules.d/$KEY.rules"
# As other_filters may include paths, lets use a different delimiter for it
# The "F" script expression tells sed to print the filenames where the expressions matched
readarray -t files_to_inspect < <(sed -s -n -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" -e "F" /etc/audit/rules.d/*.rules)
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
file_to_inspect="/etc/audit/rules.d/$KEY.rules"
files_to_inspect=("$file_to_inspect")
if [ ! -e "$file_to_inspect" ]
then
touch "$file_to_inspect"
chmod 0600 "$file_to_inspect"
fi
fi
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
default_file="/etc/audit/audit.rules"
files_to_inspect+=('/etc/audit/audit.rules' )
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod o-rwx ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
done
# Then perform the remediations for the watch rules
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
files_to_inspect=()
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
files_to_inspect+=('/etc/audit/audit.rules')
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "^[\s]*-w[\s]+/etc/issue" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Define BRE whitespace class shortcut
sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s#$sp*-w$sp\+/etc/issue $sp\+-p$sp\+\([rxwa]\{1,4\}\).*#\1#p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "wa" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s#\($sp*-w$sp\+/etc/issue$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)#\1$current_access_bits\3#" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w /etc/issue -p wa -k audit_rules_networkconfig_modification" >> "$audit_rules_file"
fi
done
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
files_to_inspect=()
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/audit_rules_networkconfig_modification.rules' to list of files for inspection.
readarray -t matches < <(grep -HP "[\s]*-w[\s]+/etc/issue" /etc/audit/rules.d/*.rules)
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect+=("$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ "${#files_to_inspect[@]}" -eq "0" ]
then
# Append '/etc/audit/rules.d/audit_rules_networkconfig_modification.rules' into list of files for inspection
key_rule_file="/etc/audit/rules.d/audit_rules_networkconfig_modification.rules"
# If the audit_rules_networkconfig_modification.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$key_rule_file" ]
then
touch "$key_rule_file"
chmod 0600 "$key_rule_file"
fi
files_to_inspect+=("$key_rule_file")
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "^[\s]*-w[\s]+/etc/issue" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Define BRE whitespace class shortcut
sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s#$sp*-w$sp\+/etc/issue $sp\+-p$sp\+\([rxwa]\{1,4\}\).*#\1#p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "wa" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s#\($sp*-w$sp\+/etc/issue$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)#\1$current_access_bits\3#" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w /etc/issue -p wa -k audit_rules_networkconfig_modification" >> "$audit_rules_file"
fi
done
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
files_to_inspect=()
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
files_to_inspect+=('/etc/audit/audit.rules')
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "^[\s]*-w[\s]+/etc/issue.net" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Define BRE whitespace class shortcut
sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s#$sp*-w$sp\+/etc/issue.net $sp\+-p$sp\+\([rxwa]\{1,4\}\).*#\1#p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "wa" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s#\($sp*-w$sp\+/etc/issue.net$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)#\1$current_access_bits\3#" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification" >> "$audit_rules_file"
fi
done
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
files_to_inspect=()
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/audit_rules_networkconfig_modification.rules' to list of files for inspection.
readarray -t matches < <(grep -HP "[\s]*-w[\s]+/etc/issue.net" /etc/audit/rules.d/*.rules)
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect+=("$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ "${#files_to_inspect[@]}" -eq "0" ]
then
# Append '/etc/audit/rules.d/audit_rules_networkconfig_modification.rules' into list of files for inspection
key_rule_file="/etc/audit/rules.d/audit_rules_networkconfig_modification.rules"
# If the audit_rules_networkconfig_modification.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$key_rule_file" ]
then
touch "$key_rule_file"
chmod 0600 "$key_rule_file"
fi
files_to_inspect+=("$key_rule_file")
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "^[\s]*-w[\s]+/etc/issue.net" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Define BRE whitespace class shortcut
sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s#$sp*-w$sp\+/etc/issue.net $sp\+-p$sp\+\([rxwa]\{1,4\}\).*#\1#p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "wa" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s#\($sp*-w$sp\+/etc/issue.net$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)#\1$current_access_bits\3#" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification" >> "$audit_rules_file"
fi
done
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
files_to_inspect=()
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
files_to_inspect+=('/etc/audit/audit.rules')
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "^[\s]*-w[\s]+/etc/hosts" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Define BRE whitespace class shortcut
sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s#$sp*-w$sp\+/etc/hosts $sp\+-p$sp\+\([rxwa]\{1,4\}\).*#\1#p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "wa" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s#\($sp*-w$sp\+/etc/hosts$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)#\1$current_access_bits\3#" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w /etc/hosts -p wa -k audit_rules_networkconfig_modification" >> "$audit_rules_file"
fi
done
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
files_to_inspect=()
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/audit_rules_networkconfig_modification.rules' to list of files for inspection.
readarray -t matches < <(grep -HP "[\s]*-w[\s]+/etc/hosts" /etc/audit/rules.d/*.rules)
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect+=("$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ "${#files_to_inspect[@]}" -eq "0" ]
then
# Append '/etc/audit/rules.d/audit_rules_networkconfig_modification.rules' into list of files for inspection
key_rule_file="/etc/audit/rules.d/audit_rules_networkconfig_modification.rules"
# If the audit_rules_networkconfig_modification.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$key_rule_file" ]
then
touch "$key_rule_file"
chmod 0600 "$key_rule_file"
fi
files_to_inspect+=("$key_rule_file")
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "^[\s]*-w[\s]+/etc/hosts" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Define BRE whitespace class shortcut
sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s#$sp*-w$sp\+/etc/hosts $sp\+-p$sp\+\([rxwa]\{1,4\}\).*#\1#p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "wa" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s#\($sp*-w$sp\+/etc/hosts$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)#\1$current_access_bits\3#" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w /etc/hosts -p wa -k audit_rules_networkconfig_modification" >> "$audit_rules_file"
fi
done
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
files_to_inspect=()
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
files_to_inspect+=('/etc/audit/audit.rules')
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "^[\s]*-w[\s]+/etc/sysconfig/network" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Define BRE whitespace class shortcut
sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s#$sp*-w$sp\+/etc/sysconfig/network $sp\+-p$sp\+\([rxwa]\{1,4\}\).*#\1#p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "wa" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s#\($sp*-w$sp\+/etc/sysconfig/network$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)#\1$current_access_bits\3#" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification" >> "$audit_rules_file"
fi
done
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
files_to_inspect=()
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/audit_rules_networkconfig_modification.rules' to list of files for inspection.
readarray -t matches < <(grep -HP "[\s]*-w[\s]+/etc/sysconfig/network" /etc/audit/rules.d/*.rules)
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect+=("$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ "${#files_to_inspect[@]}" -eq "0" ]
then
# Append '/etc/audit/rules.d/audit_rules_networkconfig_modification.rules' into list of files for inspection
key_rule_file="/etc/audit/rules.d/audit_rules_networkconfig_modification.rules"
# If the audit_rules_networkconfig_modification.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$key_rule_file" ]
then
touch "$key_rule_file"
chmod 0600 "$key_rule_file"
fi
files_to_inspect+=("$key_rule_file")
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "^[\s]*-w[\s]+/etc/sysconfig/network" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Define BRE whitespace class shortcut
sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s#$sp*-w$sp\+/etc/sysconfig/network $sp\+-p$sp\+\([rxwa]\{1,4\}\).*#\1#p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "wa" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s#\($sp*-w$sp\+/etc/sysconfig/network$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)#\1$current_access_bits\3#" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification" >> "$audit_rules_file"
fi
done
else
>&2 echo 'Remediation is not applicable, nothing was done'
fi
Remediation Ansible snippet ⇲Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | false |
---|
Strategy: | restrict |
---|
- name: Gather the package facts
package_facts:
manager: auto
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Set architecture for audit tasks
set_fact:
audit_arch: b64
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- ansible_architecture == "aarch64" or ansible_architecture == "ppc64" or ansible_architecture
== "ppc64le" or ansible_architecture == "s390x" or ansible_architecture == "x86_64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Remediate audit rules for network configuration for 32bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- sethostname
- setdomainname
syscall_grouping:
- sethostname
- setdomainname
- name: Check existence of sethostname, setdomainname in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/audit_rules_networkconfig_modification.rules
set_fact: audit_file="/etc/audit/rules.d/audit_rules_networkconfig_modification.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F key=audit_rules_networkconfig_modification
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- sethostname
- setdomainname
syscall_grouping:
- sethostname
- setdomainname
- name: Check existence of sethostname, setdomainname in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F key=audit_rules_networkconfig_modification
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Remediate audit rules for network configuration for 64bit platform
block:
- name: Declare list of syscalls
set_fact:
syscalls:
- sethostname
- setdomainname
syscall_grouping:
- sethostname
- setdomainname
- name: Check existence of sethostname, setdomainname in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
set_fact: found_paths="{{ find_command.results | map(attribute='files') | flatten
| map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/audit_rules_networkconfig_modification.rules
set_fact: audit_file="/etc/audit/rules.d/audit_rules_networkconfig_modification.rules"
when: found_paths | length == 0
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F key=audit_rules_networkconfig_modification
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
set_fact:
syscalls:
- sethostname
- setdomainname
syscall_grouping:
- sethostname
- setdomainname
- name: Check existence of sethostname, setdomainname in /etc/audit/audit.rules
find:
paths: /etc/audit
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
set_fact: syscalls_found="{{ find_command.results | selectattr('matched') | map(attribute='item')
| list }}"
- name: Declare missing syscalls
set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found) }}"
- name: Replace the audit rule in {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( (?:-k |-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F key=audit_rules_networkconfig_modification
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- audit_arch == "b64"
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Check if watch rule for /etc/issue already exists in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: ^\s*-w\s+/etc/issue\s+-p\s+wa(\s|$)+
patterns: '*.rules'
register: find_existing_watch_rules_d
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Search /etc/audit/rules.d for other rules with specified key audit_rules_networkconfig_modification
find:
paths: /etc/audit/rules.d
contains: ^.*(?:-F key=|-k\s+)audit_rules_networkconfig_modification$
patterns: '*.rules'
register: find_watch_key
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_rules_d.matched is defined and find_existing_watch_rules_d.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Use /etc/audit/rules.d/audit_rules_networkconfig_modification.rules as the
recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/audit_rules_networkconfig_modification.rules
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_watch_key.matched is defined and find_watch_key.matched == 0 and find_existing_watch_rules_d.matched
is defined and find_existing_watch_rules_d.matched == 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- '{{ find_watch_key.files | map(attribute=''path'') | list | first }}'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_watch_key.matched is defined and find_watch_key.matched > 0 and find_existing_watch_rules_d.matched
is defined and find_existing_watch_rules_d.matched == 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Add watch rule for /etc/issue in /etc/audit/rules.d/
lineinfile:
path: '{{ all_files[0] }}'
line: -w /etc/issue -p wa -k audit_rules_networkconfig_modification
create: true
mode: '0600'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_rules_d.matched is defined and find_existing_watch_rules_d.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Check if watch rule for /etc/issue already exists in /etc/audit/audit.rules
find:
paths: /etc/audit/
contains: ^\s*-w\s+/etc/issue\s+-p\s+wa(\s|$)+
patterns: audit.rules
register: find_existing_watch_audit_rules
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Add watch rule for /etc/issue in /etc/audit/audit.rules
lineinfile:
line: -w /etc/issue -p wa -k audit_rules_networkconfig_modification
state: present
dest: /etc/audit/audit.rules
create: true
mode: '0600'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_audit_rules.matched is defined and find_existing_watch_audit_rules.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Check if watch rule for /etc/issue.net already exists in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: ^\s*-w\s+/etc/issue.net\s+-p\s+wa(\s|$)+
patterns: '*.rules'
register: find_existing_watch_rules_d
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Search /etc/audit/rules.d for other rules with specified key audit_rules_networkconfig_modification
find:
paths: /etc/audit/rules.d
contains: ^.*(?:-F key=|-k\s+)audit_rules_networkconfig_modification$
patterns: '*.rules'
register: find_watch_key
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_rules_d.matched is defined and find_existing_watch_rules_d.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Use /etc/audit/rules.d/audit_rules_networkconfig_modification.rules as the
recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/audit_rules_networkconfig_modification.rules
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_watch_key.matched is defined and find_watch_key.matched == 0 and find_existing_watch_rules_d.matched
is defined and find_existing_watch_rules_d.matched == 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- '{{ find_watch_key.files | map(attribute=''path'') | list | first }}'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_watch_key.matched is defined and find_watch_key.matched > 0 and find_existing_watch_rules_d.matched
is defined and find_existing_watch_rules_d.matched == 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Add watch rule for /etc/issue.net in /etc/audit/rules.d/
lineinfile:
path: '{{ all_files[0] }}'
line: -w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
create: true
mode: '0600'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_rules_d.matched is defined and find_existing_watch_rules_d.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Check if watch rule for /etc/issue.net already exists in /etc/audit/audit.rules
find:
paths: /etc/audit/
contains: ^\s*-w\s+/etc/issue.net\s+-p\s+wa(\s|$)+
patterns: audit.rules
register: find_existing_watch_audit_rules
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Add watch rule for /etc/issue.net in /etc/audit/audit.rules
lineinfile:
line: -w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
state: present
dest: /etc/audit/audit.rules
create: true
mode: '0600'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_audit_rules.matched is defined and find_existing_watch_audit_rules.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Check if watch rule for /etc/hosts already exists in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: ^\s*-w\s+/etc/hosts\s+-p\s+wa(\s|$)+
patterns: '*.rules'
register: find_existing_watch_rules_d
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Search /etc/audit/rules.d for other rules with specified key audit_rules_networkconfig_modification
find:
paths: /etc/audit/rules.d
contains: ^.*(?:-F key=|-k\s+)audit_rules_networkconfig_modification$
patterns: '*.rules'
register: find_watch_key
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_rules_d.matched is defined and find_existing_watch_rules_d.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Use /etc/audit/rules.d/audit_rules_networkconfig_modification.rules as the
recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/audit_rules_networkconfig_modification.rules
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_watch_key.matched is defined and find_watch_key.matched == 0 and find_existing_watch_rules_d.matched
is defined and find_existing_watch_rules_d.matched == 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- '{{ find_watch_key.files | map(attribute=''path'') | list | first }}'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_watch_key.matched is defined and find_watch_key.matched > 0 and find_existing_watch_rules_d.matched
is defined and find_existing_watch_rules_d.matched == 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Add watch rule for /etc/hosts in /etc/audit/rules.d/
lineinfile:
path: '{{ all_files[0] }}'
line: -w /etc/hosts -p wa -k audit_rules_networkconfig_modification
create: true
mode: '0600'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_rules_d.matched is defined and find_existing_watch_rules_d.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Check if watch rule for /etc/hosts already exists in /etc/audit/audit.rules
find:
paths: /etc/audit/
contains: ^\s*-w\s+/etc/hosts\s+-p\s+wa(\s|$)+
patterns: audit.rules
register: find_existing_watch_audit_rules
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Add watch rule for /etc/hosts in /etc/audit/audit.rules
lineinfile:
line: -w /etc/hosts -p wa -k audit_rules_networkconfig_modification
state: present
dest: /etc/audit/audit.rules
create: true
mode: '0600'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_audit_rules.matched is defined and find_existing_watch_audit_rules.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Check if watch rule for /etc/sysconfig/network already exists in /etc/audit/rules.d/
find:
paths: /etc/audit/rules.d
contains: ^\s*-w\s+/etc/sysconfig/network\s+-p\s+wa(\s|$)+
patterns: '*.rules'
register: find_existing_watch_rules_d
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Search /etc/audit/rules.d for other rules with specified key audit_rules_networkconfig_modification
find:
paths: /etc/audit/rules.d
contains: ^.*(?:-F key=|-k\s+)audit_rules_networkconfig_modification$
patterns: '*.rules'
register: find_watch_key
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_rules_d.matched is defined and find_existing_watch_rules_d.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Use /etc/audit/rules.d/audit_rules_networkconfig_modification.rules as the
recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/audit_rules_networkconfig_modification.rules
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_watch_key.matched is defined and find_watch_key.matched == 0 and find_existing_watch_rules_d.matched
is defined and find_existing_watch_rules_d.matched == 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- '{{ find_watch_key.files | map(attribute=''path'') | list | first }}'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_watch_key.matched is defined and find_watch_key.matched > 0 and find_existing_watch_rules_d.matched
is defined and find_existing_watch_rules_d.matched == 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Add watch rule for /etc/sysconfig/network in /etc/audit/rules.d/
lineinfile:
path: '{{ all_files[0] }}'
line: -w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
create: true
mode: '0600'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_rules_d.matched is defined and find_existing_watch_rules_d.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Check if watch rule for /etc/sysconfig/network already exists in /etc/audit/audit.rules
find:
paths: /etc/audit/
contains: ^\s*-w\s+/etc/sysconfig/network\s+-p\s+wa(\s|$)+
patterns: audit.rules
register: find_existing_watch_audit_rules
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
- name: Add watch rule for /etc/sysconfig/network in /etc/audit/audit.rules
lineinfile:
line: -w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
state: present
dest: /etc/audit/audit.rules
create: true
mode: '0600'
when:
- '"audit" in ansible_facts.packages'
- ("kernel" in ansible_facts.packages or "kernel-uek" in ansible_facts.packages)
- find_existing_watch_audit_rules.matched is defined and find_existing_watch_audit_rules.matched
== 0
tags:
- CJIS-5.4.1.1
- NIST-800-171-3.1.7
- NIST-800-53-AC-6(9)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-CM-6(a)
- PCI-DSS-Req-10.5.5
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_networkconfig_modification
- low_complexity
- low_disruption
- medium_severity
- no_reboot_needed
- restrict_strategy
|
|
Rule
Record Attempts to Alter Process and Session Initiation Information
[ref] | The audit system already collects process information for all
users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing such process information:
-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for attempted manual
edits of files involved in storing such process information:
-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session
| Rationale: | Manual editing of these files may indicate nefarious activity, such
as an attacker attempting to remove evidence of an intrusion. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_session_events | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | ism | 0582, 0584, 05885, 0586, 0846, 0957 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nist | AU-2(d), AU-12(c), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.2.3 | app-srg-ctr | SRG-APP-000505-CTR-001285 | anssi | R73 | pcidss4 | 10.2.1.3, 10.2.1, 10.2 |
| |
|
Rule
Ensure auditd Collects System Administrator Actions
[ref] | At a minimum, the audit system should collect administrator actions
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the default),
add the following line to a file with suffix .rules in the directory
/etc/audit/rules.d :
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
| Rationale: | The actions taken by system administrators should be audited to keep a record
of what was executed on the system, as well as, for accountability purposes. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_sysadmin_actions | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nist | AC-2(7)(b), AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.2.2, Req-10.2.5.b | os-srg | SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000304-GPOS-00121, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221 | app-srg-ctr | SRG-APP-000026-CTR-000070, SRG-APP-000027-CTR-000075, SRG-APP-000028-CTR-000080, SRG-APP-000291-CTR-000675, SRG-APP-000292-CTR-000680, SRG-APP-000293-CTR-000685, SRG-APP-000294-CTR-000690, SRG-APP-000319-CTR-000745, SRG-APP-000320-CTR-000750, SRG-APP-000509-CTR-001305 | anssi | R73 | pcidss4 | 10.2.1.5, 10.2.1, 10.2 |
| |
|
Rule
Record Events that Modify User/Group Information
[ref] | If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d , in order to capture events that modify
account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file, in order to capture events that modify
account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification
Warning:
This rule checks for multiple syscalls related to account changes;
it was written with DISA STIG in mind. Other policies should use a
separate rule for each syscall that needs to be checked. For example:
audit_rules_usergroup_modification_group audit_rules_usergroup_modification_gshadow audit_rules_usergroup_modification_passwd
| Rationale: | In addition to auditing new user and group accounts, these watches
will alert the system administrator(s) to any modifications. Any unexpected
users, groups, or modifications should be investigated for legitimacy. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_usergroup_modification | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.1.7 | disa | CCI-000018, CCI-000130, CCI-000172, CCI-001403, CCI-002130 | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nerc-cip | CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3 | nist | AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | pcidss | Req-10.2.5 | os-srg | SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000239-GPOS-00089, SRG-OS-000241-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000476-GPOS-00221 | app-srg-ctr | SRG-APP-000026-CTR-000070, SRG-APP-000027-CTR-000075, SRG-APP-000028-CTR-000080, SRG-APP-000291-CTR-000675, SRG-APP-000292-CTR-000680, SRG-APP-000293-CTR-000685, SRG-APP-000294-CTR-000690, SRG-APP-000319-CTR-000745, SRG-APP-000320-CTR-000750, SRG-APP-000509-CTR-001305 |
| |
|
Group
Configure auditd Data Retention
Group contains 6 rules |
[ref]
The audit system writes data to /var/log/audit/audit.log . By default,
auditd rotates 5 logs by size (6MB), retaining a maximum of 30MB of
data in total, and refuses to write entries when the disk is too
full. This minimizes the risk of audit data filling its partition
and impacting other services. This also minimizes the risk of the audit
daemon temporarily disabling the system if it cannot write audit log (which
it can be configured to do).
For a busy
system or a system which is thoroughly auditing system activity, the default settings
for data retention may be
insufficient. The log file size needed will depend heavily on what types
of events are being audited. First configure auditing to log all the events of
interest. Then monitor the log size manually for awhile to determine what file
size will allow you to keep the required data for the correct time period.
Using a dedicated partition for /var/log/audit prevents the
auditd logs from disrupting system functionality if they fill, and,
more importantly, prevents other activity in /var from filling the
partition and stopping the audit trail. (The audit logs are size-limited and
therefore unlikely to grow without bound unless configured to do so.) Some
machines may have requirements that no actions occur which cannot be audited.
If this is the case, then auditd can be configured to halt the machine
if it runs out of space. Note: Since older logs are rotated,
configuring auditd this way does not prevent older logs from being
rotated away before they can be viewed.
If your system is configured to halt when logging cannot be performed, make
sure this can never happen under normal circumstances! Ensure that
/var/log/audit is on its own partition, and that this partition is
larger than the maximum amount of data auditd will retain
normally.
|
Rule
Configure auditd flush priority
[ref] | The auditd service can be configured to
synchronously write audit event data to disk. Add or correct the following
line in /etc/audit/auditd.conf to ensure that audit event data is
fully synchronized with the log files on the disk:
flush = incremental_async
| Rationale: | Audit data should be synchronously written to disk to ensure
log integrity. These parameters assure that all audit event data is fully
synchronized with the log files on the disk. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_auditd_data_retention_flush | References: | cis-csc | 1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.3.1 | disa | CCI-001576 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | isa-62443-2009 | 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2 | iso27001-2013 | A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2 | nerc-cip | CIP-004-6 R2.2.3, CIP-004-6 R3.3, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, CIP-007-3 R6.5 | nist | AU-11, CM-6(a) | nist-csf | DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.PT-1 | os-srg | SRG-OS-000480-GPOS-00227 |
| |
|
Rule
Set number of records to cause an explicit flush to audit logs
[ref] | To configure Audit daemon to issue an explicit flush to disk command
after writing 50 records, set freq to 50
in /etc/audit/auditd.conf . | Rationale: | If option freq isn't set to 50 , the flush to disk
may happen after higher number of records, increasing the danger
of audit loss. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_auditd_freq | References: | | |
|
Rule
Include Local Events in Audit Logs
[ref] | To configure Audit daemon to include local events in Audit logs, set
local_events to yes in /etc/audit/auditd.conf .
This is the default setting. | Rationale: | If option local_events isn't set to yes only events from
network will be aggregated. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_auditd_local_events | References: | disa | CCI-000366, CCI-000169 | nist | CM-6 | os-srg | SRG-OS-000062-GPOS-00031, SRG-OS-000480-GPOS-00227 | stigid | OL08-00-030061 | stigref | SV-248729r991589_rule |
| |
|
Rule
Resolve information before writing to audit logs
[ref] | To configure Audit daemon to resolve all uid, gid, syscall,
architecture, and socket address information before writing the
events to disk, set log_format to ENRICHED
in /etc/audit/auditd.conf . | Rationale: | If option log_format isn't set to ENRICHED , the
audit records will be stored in a format exactly as the kernel sends them. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_auditd_log_format | References: | disa | CCI-000366, CCI-001487 | nist | CM-6, AU-3 | ospp | FAU_GEN.1.2 | os-srg | SRG-OS-000255-GPOS-00096, SRG-OS-000480-GPOS-00227 | app-srg-ctr | SRG-APP-000096-CTR-000175, SRG-APP-000097-CTR-000180, SRG-APP-000098-CTR-000185, SRG-APP-000099-CTR-000190, SRG-APP-000100-CTR-000195, SRG-APP-000100-CTR-000200, SRG-APP-000109-CTR-000215, SRG-APP-000290-CTR-000670, SRG-APP-000357-CTR-000800 | stigid | OL08-00-030063 | stigref | SV-248731r991589_rule |
| |
|
Rule
Set type of computer node name logging in audit logs
[ref] | To configure Audit daemon to use a unique identifier
as computer node name in the audit events,
set name_format to hostname
in /etc/audit/auditd.conf . Warning:
Whenever the variable var_auditd_name_format uses a multiple value option, for example
A|B|C , the first value will be used when remediating this rule. | Rationale: | If option name_format is left at its default value of
none , audit events from different computers may be hard
to distinguish. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_auditd_name_format | References: | disa | CCI-000132, CCI-001851 | nist | CM-6, AU-3 | ospp | FAU_GEN.1.2 | os-srg | SRG-OS-000039-GPOS-00017, SRG-OS-000342-GPOS-00133, SRG-OS-000479-GPOS-00224 | stigid | OL08-00-030062 | pcidss4 | 10.2.2, 10.2 | stigref | SV-248730r958754_rule |
| |
|
Rule
Write Audit Logs to the Disk
[ref] | To configure Audit daemon to write Audit logs to the disk, set
write_logs to yes in /etc/audit/auditd.conf .
This is the default setting. | Rationale: | If write_logs isn't set to yes , the Audit logs will
not be written to the disk. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_auditd_write_logs | References: | | |
|
Group
System Accounting with auditd
Group contains 2 rules |
[ref]
The auditd program can perform comprehensive
monitoring of system activity. This section makes use of recommended
configuration settings for specific policies or use cases.
The rules in this section make use of rules defined in /usr/share/doc/audit-VERSION/rules . |
Rule
Configure auditing of unsuccessful file accesses
[ref] | Ensure that unsuccessful attempts to access a file are audited.
The following rules configure audit as described above:
## Unsuccessful file access (any other opens) This has to go last.
-a always,exit -F arch=b32 -S open,openat,openat2,open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-access
-a always,exit -F arch=b64 -S open,openat,openat2,open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-access
-a always,exit -F arch=b32 -S open,openat,openat2,open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-access
-a always,exit -F arch=b64 -S open,openat,openat2,open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-access
Load new Audit rules into kernel by running:
augenrules --load
Note: This rule uses a special set of Audit rules to comply with OSPP 4.2.1. You may reuse this rule in different profiles. If you decide to do so, it is recommended that you inspect contents of the file closely and make sure that they are alligned with your needs. | Rationale: | Unsuccessful attempts to access a file might be signs of malicious activity happening within the system. Auditing of such activities helps in their monitoring and investigation. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_access_failed | References: | ism | 0582, 0584, 05885, 0586, 0846, 0957 | nist | AU-2(a) | ospp | FAU_GEN.1.1.c | os-srg | SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-OS-000475-GPOS-00220, SRG-OS-000463-GPOS-00207, SRG-OS-000465-GPOS-00209, SRG-OS-000461-GPOS-00205 | app-srg-ctr | SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295 |
| |
|
Rule
Configure auditing of successful file accesses
[ref] | Ensure that successful attempts to access a file are audited.
The following rules configure audit as described above:
## Successful file access (any other opens) This has to go last.
## These next two are likely to result in a whole lot of events
-a always,exit -F arch=b32 -S open,openat,openat2,open_by_handle_at -F success=1 -F auid>=1000 -F auid!=unset -F key=successful-access
-a always,exit -F arch=b64 -S open,openat,openat2,open_by_handle_at -F success=1 -F auid>=1000 -F auid!=unset -F key=successful-access
Load new Audit rules into kernel by running:
augenrules --load
Note: This rule uses a special set of Audit rules to comply with OSPP 4.2.1. You may reuse this rule in different profiles. If you decide to do so, it is recommended that you inspect contents of the file closely and make sure that they are alligned with your needs. | Rationale: | Auditing of successful attempts to access a file helps in investigation of activities performed on the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_audit_access_success | References: | ism | 0582, 0584, 05885, 0586, 0846, 0957 | nist | AU-2(a) | ospp | FAU_GEN.1.1.c | os-srg | SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-OS-000475-GPOS-00220, SRG-OS-000463-GPOS-00207, SRG-OS-000465-GPOS-00209, SRG-OS-000461-GPOS-00205 |
| |
|
Rule
Enable auditd Service
[ref] | The auditd service is an essential userspace component of
the Linux Auditing System, as it is responsible for writing audit records to
disk.
The auditd service can be enabled with the following command:
$ sudo systemctl enable auditd.service
| Rationale: | Without establishing what type of events occurred, it would be difficult
to establish, correlate, and investigate the events leading up to an outage or attack.
Ensuring the auditd service is active ensures audit records
generated by the kernel are appropriately recorded.
Additionally, a properly configured audit subsystem ensures that actions of
individual system users can be uniquely traced to those users so they
can be held accountable for their actions. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_auditd_enabled | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | cjis | 5.4.1.1 | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | cui | 3.3.1, 3.3.2, 3.3.6 | disa | CCI-000133, CCI-001881, CCI-001875, CCI-000154, CCI-001882, CCI-000158, CCI-001914, CCI-000169, CCI-001464, CCI-001878, CCI-001877, CCI-001889, CCI-000135, CCI-002884, CCI-001487, CCI-003938, CCI-000132, CCI-004188, CCI-000134, CCI-000172, CCI-000130, CCI-000131, CCI-001879, CCI-001880, CCI-001876 | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(5)(ii)(C), 164.310(a)(2)(iv), 164.310(d)(2)(iii), 164.312(b) | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | nerc-cip | CIP-004-6 R3.3, CIP-007-3 R6.5 | nist | AC-2(g), AU-3, AU-10, AU-2(d), AU-12(c), AU-14(1), AC-6(9), CM-6(a), SI-4(23) | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | ospp | FAU_GEN.1 | pcidss | Req-10.1 | os-srg | SRG-OS-000062-GPOS-00031, SRG-OS-000037-GPOS-00015, SRG-OS-000038-GPOS-00016, SRG-OS-000039-GPOS-00017, SRG-OS-000040-GPOS-00018, SRG-OS-000041-GPOS-00019, SRG-OS-000042-GPOS-00021, SRG-OS-000051-GPOS-00024, SRG-OS-000054-GPOS-00025, SRG-OS-000122-GPOS-00063, SRG-OS-000254-GPOS-00095, SRG-OS-000255-GPOS-00096, SRG-OS-000337-GPOS-00129, SRG-OS-000348-GPOS-00136, SRG-OS-000349-GPOS-00137, SRG-OS-000350-GPOS-00138, SRG-OS-000351-GPOS-00139, SRG-OS-000352-GPOS-00140, SRG-OS-000353-GPOS-00141, SRG-OS-000354-GPOS-00142, SRG-OS-000358-GPOS-00145, SRG-OS-000365-GPOS-00152, SRG-OS-000392-GPOS-00172, SRG-OS-000475-GPOS-00220 | app-srg-ctr | SRG-APP-000095-CTR-000170, SRG-APP-000409-CTR-000990, SRG-APP-000508-CTR-001300, SRG-APP-000510-CTR-001310 | stigid | OL08-00-030181 | anssi | R33, R73 | pcidss4 | 10.2.1, 10.2 | stigref | SV-248520r1015025_rule |
| |
|