Group
Guide to the Secure Configuration of SUSE Linux Enterprise 15
Group contains 25 groups and 43 rules |
Group
System Settings
Group contains 13 groups and 30 rules |
[ref]
Contains rules that check correct system settings. |
Group
Installing and Maintaining Software
Group contains 1 group and 8 rules |
[ref]
The following sections contain information on
security-relevant choices during the initial operating system
installation process and the setup of software
updates. |
Group
Updating Software
Group contains 8 rules |
[ref]
The zypper command line tool is used to install and
update software packages. The system also provides a graphical
software update tool in the System menu, in the Administration submenu,
called Software Update.
SUSE Linux Enterprise 15 systems contain an installed software catalog called
the RPM database, which records metadata of installed packages. Consistently using
zypper or the graphical Software Update for all software installation
allows for insight into the current inventory of installed software on the system.
|
Rule
Install dnf-automatic Package
[ref] | The dnf-automatic package can be installed with the following command:
$ sudo zypper install dnf-automatic
| Rationale: | dnf-automatic is an alternative command line interface (CLI)
to dnf upgrade suitable for automatic, regular execution.
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_dnf-automatic_installed | Identifiers: | CCE-91163-6 | References: | | |
|
Rule
Configure dnf-automatic to Install Available Updates Automatically
[ref] | To ensure that the packages comprising the available updates will be automatically installed by dnf-automatic , set apply_updates to yes under [commands] section in /etc/dnf/automatic.conf . | Rationale: | Installing software updates is a fundamental mitigation against
the exploitation of publicly-known vulnerabilities. If the most
recent security patches and updates are not installed, unauthorized
users may take advantage of weaknesses in the unpatched software. The
lack of prompt attention to patching could result in a system compromise.
The automated installation of updates ensures that recent security patches
are applied in a timely manner. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_dnf-automatic_apply_updates | Identifiers: | CCE-91165-1 | References: | ism | 0940, 1144, 1467, 1472, 1483, 1493, 1494, 1495 | nist | SI-2(5), CM-6(a), SI-2(c) | ospp | FMT_SMF_EXT.1 | os-srg | SRG-OS-000805-GPOS-00260 | anssi | R61 |
| |
|
Rule
Configure dnf-automatic to Install Only Security Updates
[ref] | To configure dnf-automatic to install only security updates
automatically, set upgrade_type to security under
[commands] section in /etc/dnf/automatic.conf . | Rationale: | By default, dnf-automatic installs all available updates.
Reducing the amount of updated packages only to updates that were
issued as a part of a security advisory increases the system stability. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_dnf-automatic_security_updates_only | Identifiers: | CCE-91166-9 | References: | | |
|
Rule
Ensure gpgcheck Enabled In Main zypper Configuration
[ref] | The gpgcheck option controls whether
RPM packages' signatures are always checked prior to installation.
To configure zypper to check package signatures before installing
them, ensure the following line appears in /etc/zypp/zypp.conf in
the [main] section:
gpgcheck=1
| Rationale: | Changes to any software components can have significant effects on the
overall security of the operating system. This requirement ensures the
software has not been tampered with and that it has been provided by a
trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system
components must be signed with a certificate recognized and approved by the
organization.
Verifying the authenticity of the software prior to installation
validates the integrity of the patch or upgrade received from a vendor.
This ensures the software has not been tampered with and that it has been
provided by a trusted vendor. Self-signed certificates are disallowed by
this requirement. Certificates used to verify the software must be from an
approved Certificate Authority (CA). | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_globally_activated | Identifiers: | CCE-83290-7 | References: | cis-csc | 11, 2, 3, 9 | cjis | 5.10.4.1 | cobit5 | APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02 | cui | 3.4.8 | disa | CCI-003992 | hipaa | 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4 | isa-62443-2013 | SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6 | iso27001-2013 | A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4 | nist | CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), SA-12, SA-12(10), CM-11(a), CM-11(b) | nist-csf | PR.DS-6, PR.DS-8, PR.IP-1 | ospp | FPT_TUD_EXT.1, FPT_TUD_EXT.2 | pcidss | Req-6.2 | os-srg | SRG-OS-000366-GPOS-00153 | stigid | SLES-15-010430 | cis | 1.2.3 | anssi | R59 | pcidss4 | 6.3.3, 6.3 | stigref | SV-234852r1009613_rule |
| |
|
Rule
Ensure gpgcheck Enabled for Local Packages
[ref] | zypper should be configured to verify the signature(s) of local packages
prior to installation. To configure zypper to verify signatures of local
packages, set the localpkg_gpgcheck to 1 in /etc/zypp/zypp.conf .
| Rationale: | Changes to any software components can have significant effects to the overall security
of the operating system. This requirement ensures the software has not been tampered and
has been provided by a trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must
be signed with a certificate recognized and approved by the organization. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_local_packages | Identifiers: | CCE-91167-7 | References: | cis-csc | 11, 3, 9 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05 | cui | 3.4.8 | disa | CCI-003992 | hipaa | 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4 | nist | CM-11(a), CM-11(b), CM-6(a), CM-5(3), SA-12, SA-12(10) | nist-csf | PR.IP-1 | ospp | FPT_TUD_EXT.1, FPT_TUD_EXT.2 | os-srg | SRG-OS-000366-GPOS-00153 | anssi | R59 |
| |
|
Rule
Ensure gpgcheck Enabled for All zypper Package Repositories
[ref] | To ensure signature checking is not disabled for
any repos, remove any lines from files in /etc/yum.repos.d of the form:
gpgcheck=0
| Rationale: | Verifying the authenticity of the software prior to installation validates
the integrity of the patch or upgrade received from a vendor. This ensures
the software has not been tampered with and that it has been provided by a
trusted vendor. Self-signed certificates are disallowed by this
requirement. Certificates used to verify the software must be from an
approved Certificate Authority (CA)." | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_never_disabled | Identifiers: | CCE-85797-9 | References: | cis-csc | 11, 2, 3, 9 | cjis | 5.10.4.1 | cobit5 | APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02 | cui | 3.4.8 | disa | CCI-003992 | hipaa | 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i) | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4 | isa-62443-2013 | SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6 | iso27001-2013 | A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4 | nist | CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), SA-12, SA-12(10), CM-11(a), CM-11(b) | nist-csf | PR.DS-6, PR.DS-8, PR.IP-1 | ospp | FPT_TUD_EXT.1, FPT_TUD_EXT.2 | pcidss | Req-6.2 | os-srg | SRG-OS-000366-GPOS-00153 | cis | 1.2.3 | anssi | R59 | pcidss4 | 6.3.3, 6.3 |
| |
|
Rule
Ensure Software Patches Installed
[ref] |
If the system is configured for online updates, invoking the following command will list available
security updates:
$ sudo zypper refresh && sudo zypper list-patches -g security
NOTE: U.S. Defense systems are required to be patched within 30 days or sooner as local policy
dictates. Warning:
The OVAL feed of SUSE Linux Enterprise 15 is not a XML file, which may not be understood by all scanners. | Rationale: | Installing software updates is a fundamental mitigation against
the exploitation of publicly-known vulnerabilities. If the most
recent security patches and updates are not installed, unauthorized
users may take advantage of weaknesses in the unpatched software. The
lack of prompt attention to patching could result in a system compromise. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_security_patches_up_to_date | Identifiers: | CCE-83261-8 | References: | cis-csc | 18, 20, 4 | cjis | 5.10.4.1 | cobit5 | APO12.01, APO12.02, APO12.03, APO12.04, BAI03.10, DSS05.01, DSS05.02 | disa | CCI-000366 | isa-62443-2009 | 4.2.3, 4.2.3.12, 4.2.3.7, 4.2.3.9 | iso27001-2013 | A.12.6.1, A.14.2.3, A.16.1.3, A.18.2.2, A.18.2.3 | nist | SI-2(5), SI-2(c), CM-6(a) | nist-csf | ID.RA-1, PR.IP-12 | ospp | FMT_MOF_EXT.1 | pcidss | Req-6.2 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | SLES-15-010010 | cis | 1.9 | anssi | R61 | pcidss4 | 6.3.3, 6.3 | stigref | SV-234802r991589_rule |
| |
|
Rule
Enable dnf-automatic Timer
[ref] |
The dnf-automatic timer can be enabled with the following command:
$ sudo systemctl enable dnf-automatic.timer
| Rationale: | The dnf-automatic is an alternative command line interface (CLI) to dnf upgrade with specific facilities to make it suitable to be executed automatically and regularly from systemd timers, cron jobs and similar.
The tool is controlled by dnf-automatic.timer SystemD timer. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_timer_dnf-automatic_enabled | Identifiers: | CCE-91164-4 | References: | | |
|
Group
Account and Access Control
Group contains 8 groups and 15 rules |
[ref]
In traditional Unix security, if an attacker gains
shell access to a certain login account, they can perform any action
or access any file to which that account has access. Therefore,
making it more difficult for unauthorized people to gain shell
access to accounts, particularly to privileged accounts, is a
necessary part of securing a system. This section introduces
mechanisms for restricting access to accounts under
SUSE Linux Enterprise 15. |
Group
Protect Accounts by Configuring PAM
Group contains 5 groups and 13 rules |
[ref]
PAM, or Pluggable Authentication Modules, is a system
which implements modular authentication for Linux programs. PAM provides
a flexible and configurable architecture for authentication, and it should be configured
to minimize exposure to unnecessary risk. This section contains
guidance on how to accomplish that.
PAM is implemented as a set of shared objects which are
loaded and invoked whenever an application wishes to authenticate a
user. Typically, the application must be running as root in order
to take advantage of PAM, because PAM's modules often need to be able
to access sensitive stores of account information, such as /etc/shadow.
Traditional privileged network listeners
(e.g. sshd) or SUID programs (e.g. sudo) already meet this
requirement. An SUID root application, userhelper, is provided so
that programs which are not SUID or privileged themselves can still
take advantage of PAM.
PAM looks in the directory /etc/pam.d for
application-specific configuration information. For instance, if
the program login attempts to authenticate a user, then PAM's
libraries follow the instructions in the file /etc/pam.d/login
to determine what actions should be taken.
One very important file in /etc/pam.d is
/etc/pam.d/system-auth . This file, which is included by
many other PAM configuration files, defines 'default' system authentication
measures. Modifying this file is a good way to make far-reaching
authentication changes, for instance when implementing a
centralized authentication service. Warning:
Be careful when making changes to PAM's configuration files.
The syntax for these files is complex, and modifications can
have unexpected consequences. The default configurations shipped
with applications should be sufficient for most users. |
Group
Set Lockouts for Failed Password Attempts
Group contains 4 rules |
[ref]
The pam_faillock PAM module provides the capability to
lock out user accounts after a number of failed login attempts. Its
documentation is available in
/usr/share/doc/pam-VERSION/txts/README.pam_faillock .
Warning:
Locking out user accounts presents the
risk of a denial-of-service attack. The lockout policy
must weigh whether the risk of such a
denial-of-service attack outweighs the benefits of thwarting
password guessing attacks. |
Rule
Limit Password Reuse
[ref] | Do not allow users to reuse recent passwords. This can be accomplished by using the
remember option for the pam_unix or pam_pwhistory PAM modules. Warning:
If the system relies on authselect tool to manage PAM settings, the remediation
will also use authselect tool. However, if any manual modification was made in
PAM files, the authselect integrity check will fail and the remediation will be
aborted in order to preserve intentional changes. In this case, an informative message will
be shown in the remediation report. Warning:
Newer versions of authselect contain an authselect feature to easily and properly
enable pam_pwhistory.so module. If this feature is not yet available in your
system, an authselect custom profile must be used to avoid integrity issues in PAM files. | Rationale: | Preventing re-use of previous passwords helps ensure that a compromised password is not
re-used by a user. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_unix_remember | Identifiers: | CCE-85678-1 | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.1.1 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.5.8 | disa | CCI-000200 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(f), IA-5(1)(e) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | pcidss | Req-8.2.5 | os-srg | SRG-OS-000077-GPOS-00045 | anssi | R31 | pcidss4 | 8.3.7, 8.3 |
| |
|
Rule
Set Deny For Failed Password Attempts
[ref] | The SUSE Linux Enterprise 15 operating system must lock an account after - at most - 5
consecutive invalid access attempts. | Rationale: | By limiting the number of failed logon attempts, the risk of unauthorized
system access via user password guessing, otherwise known as brute-force
attacks, is reduced. Limits are imposed by locking the account.
To configure the operating system to lock an account after three
unsuccessful consecutive access attempts using pam_tally2.so ,
modify the content of both /etc/pam.d/login and
/etc/pam.d/common-account as follows:
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_tally2 | Identifiers: | CCE-85554-4 | References: | | |
|
Rule
Configure the root Account lock for Failed Password Attempts via pam_tally2
[ref] | This rule configures the system to lock out the root account after a number of
incorrect login attempts using pam_tally2.so . | Rationale: | By limiting the number of failed logon attempts, the risk of unauthorized system access via
user password guessing, also known as brute-forcing, is reduced. Limits are imposed by locking
the account. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_tally2_deny_root | Identifiers: | CCE-91281-6 | References: | cis-csc | 1, 12, 15, 16 | cobit5 | DSS05.04, DSS05.10, DSS06.10 | disa | CCI-002238, CCI-000044 | isa-62443-2009 | 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3 | nist | CM-6(a), AC-7(b), IA-5(c) | nist-csf | PR.AC-7 | os-srg | SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005 | cis | 5.3.2 | anssi | R31 |
| |
|
Rule
Set Lockout Time for Failed Password Attempts using pam_tally2
[ref] | This rule configures the system to lock out accounts during a specified time period after a
number of incorrect login attempts using pam_tally2.so . | Rationale: | By limiting the number of failed logon attempts, the risk of unauthorized system access via
user password guessing, also known as brute-forcing, is reduced. Limits are imposed by locking
the account. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_tally2_unlock_time | Identifiers: | CCE-91282-4 | References: | cis-csc | 1, 12, 15, 16 | cobit5 | DSS05.04, DSS05.10, DSS06.10 | disa | CCI-002238, CCI-000044 | isa-62443-2009 | 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3 | nist | CM-6(a), AC-7(b), IA-5(c) | nist-csf | PR.AC-7 | pcidss | Req-8.1.7 | os-srg | SRG-OS-000329-GPOS-00128, SRG-OS-000021-GPOS-00005 | cis | 5.3.2 | anssi | R31 | pcidss4 | 8.3.4, 8.3 |
| |
|
Group
Set Password Quality Requirements
Group contains 2 groups and 7 rules |
[ref]
The default pam_pwquality PAM module provides strength
checking for passwords. It performs a number of checks, such as
making sure passwords are not similar to dictionary words, are of
at least a certain length, are not the previous password reversed,
and are not simply a change of case from the previous password. It
can also require passwords to be in certain character classes. The
pam_pwquality module is the preferred way of configuring
password requirements.
The man pages pam_pwquality(8)
provide information on the capabilities and configuration of
each. |
Group
Set Password Quality Requirements, if using
pam_cracklib
Group contains 5 rules |
[ref]
The pam_cracklib PAM module can be configured to meet
requirements for a variety of policies.
For example, to configure pam_cracklib to require at least one uppercase
character, lowercase character, digit, and other (special)
character, locate the following line in /etc/pam.d/system-auth :
password requisite pam_cracklib.so try_first_pass retry=3
and then alter it to read:
password required pam_cracklib.so try_first_pass retry=3 maxrepeat=3 minlen=14 dcredit=-1 ucredit=-1 ocredit=-1 lcredit=-1 difok=4
If no such line exists, add one as the first line of the password section in /etc/pam.d/system-auth .
The arguments can be modified to ensure compliance with
your organization's security policy. Discussion of each parameter follows. Warning:
Note that the password quality requirements are not enforced for the
root account for some reason. |
Rule
Set Password Strength Minimum Digit Characters
[ref] | The pam_cracklib module's dcredit parameter controls requirements
for usage of digits in a password. When set to a negative number, any
password will be required to contain that many digits. When set to a
positive number, pam_cracklib will grant +1 additional length credit for
each digit. Add dcredit=-1 after pam_cracklib.so to require use of
a digit in passwords. | Rationale: | Requiring digits makes password guessing attacks more difficult by ensuring
a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_dcredit | Identifiers: | CCE-85564-3 | References: | | |
|
Rule
Set Password Strength Minimum Lowercase Characters
[ref] | The pam_cracklib module's lcredit= parameter controls requirements
for usage of lowercase letters in a password. When set to a negative
number, any password will be required to contain that many lowercase
characters. When set to a positive number, pam_cracklib will grant +1
additional length credit for each lowercase character.
Add lcredit=-1 after pam_cracklib.so to require use of a
lowercase character in passwords. | Rationale: | Requiring a minimum number of lowercase characters makes password guessing
attacks more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_lcredit | Identifiers: | CCE-85676-5 | References: | | |
|
Rule
Set Password Minimum Length
[ref] | The pam_cracklib module's minlen parameter controls requirements for
minimum characters required in a password. Add minlen=15
to set minimum password length requirements. | Rationale: | Password length is one factor of several that helps to determine
strength and how long it takes to crack a password. Use of more characters in
a password helps to exponentially increase the time and/or resources
required to compromise the password. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_minlen | Identifiers: | CCE-85573-4 | References: | | |
|
Rule
Set Password Strength Minimum Special Characters
[ref] | The pam_cracklib module's ocredit= parameter controls requirements
for usage of special (or ``other'') characters in a password. When set to a
negative number, any password will be required to contain that many special
characters. When set to a positive number, pam_cracklib will grant +1
additional length credit for each special character.
Make sure the ocredit parameter for the pam_cracklib module is
set to less than or equal to -1 . For example, ocredit=-1
. | Rationale: | Requiring a minimum number of special characters makes password guessing
attacks more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_ocredit | Identifiers: | CCE-85574-2 | References: | | |
|
Rule
Set Password Strength Minimum Uppercase Characters
[ref] | The pam_cracklib module's ucredit= parameter controls requirements
for usage of uppercase letters in a password. When set to a negative
number, any password will be required to contain that many uppercase
characters. When set to a positive number, pam_cracklib will grant +1
additional length credit for each uppercase character.
Add ucredit=-1 after pam_cracklib.so to require use of an upper
case character in passwords. | Rationale: | Requiring a minimum number of uppercase characters makes password guessing
attacks more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_ucredit | Identifiers: | CCE-85675-7 | References: | | |
|
Group
Set Password Quality Requirements with pam_pwquality
Group contains 2 rules |
[ref]
The pam_pwquality PAM module can be configured to meet
requirements for a variety of policies.
For example, to configure pam_pwquality to require at least one uppercase
character, lowercase character, digit, and other (special)
character, make sure that pam_pwquality exists in /etc/pam.d/system-auth :
password requisite pam_pwquality.so try_first_pass local_users_only retry=3 authtok_type=
If no such line exists, add one as the first line of the password section in /etc/pam.d/system-auth .
Next, modify the settings in /etc/security/pwquality.conf to match the following:
difok = 4
minlen = 14
dcredit = -1
ucredit = -1
lcredit = -1
ocredit = -1
maxrepeat = 3
The arguments can be modified to ensure compliance with
your organization's security policy. Discussion of each parameter follows. |
Rule
Ensure PAM Enforces Password Requirements - Minimum Different Categories
[ref] | The pam_pwquality module's minclass parameter controls
requirements for usage of different character classes, or types, of character
that must exist in a password before it is considered valid. For example,
setting this value to three (3) requires that any password must have characters
from at least three different categories in order to be approved. The default
value is zero (0), meaning there are no required classes. There are four
categories available:
* Upper-case characters
* Lower-case characters
* Digits
* Special characters (for example, punctuation)
Modify the minclass setting in /etc/security/pwquality.conf entry
to require 4
differing categories of characters when changing passwords. | Rationale: | Use of a complex password helps to increase the time and resources required to compromise the password.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts
at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The
more complex the password, the greater the number of possible combinations that need to be tested before
the password is compromised.
Requiring a minimum number of character categories makes password guessing attacks more difficult
by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_minclass | References: | cis-csc | 1, 12, 15, 16, 5 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(a), CM-6(a), IA-5(4) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | os-srg | SRG-OS-000072-GPOS-00040 | anssi | R68 |
| |
|
Rule
Ensure PAM Enforces Password Requirements - Authentication Retry Prompts Permitted Per-Session
[ref] | To configure the number of retry prompts that are permitted per-session:
Edit the pam_pwquality.so statement in
/etc/pam.d/system-auth to show
retry=3
, or a lower value if site
policy is more restrictive. The DoD requirement is a maximum of 3 prompts
per session. | Rationale: | Setting the password retry prompts that are permitted on a per-session basis to a low value
requires some software, such as SSH, to re-connect. This can slow down and
draw additional attention to some types of password-guessing attacks. Note that this
is different from account lockout, which is provided by the pam_faillock module. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_pam_retry | References: | cis-csc | 1, 11, 12, 15, 16, 3, 5, 9 | cjis | 5.5.3 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | CM-6(a), AC-7(a), IA-5(4) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7, PR.IP-1 | os-srg | SRG-OS-000069-GPOS-00037, SRG-OS-000480-GPOS-00227 | anssi | R68 |
| |
|
Group
Set Password Hashing Algorithm
Group contains 2 rules |
[ref]
The system's default algorithm for storing password hashes in
/etc/shadow is SHA-512. This can be configured in several
locations. |
Rule
Set PAM''s Password Hashing Algorithm
[ref] | The PAM system service can be configured to only store encrypted representations of passwords.
In "/etc/pam.d/common-password", the password section of the file controls which
PAM modules to execute during a password change.
Set the pam_unix.so module in the password section to include the option
sha512 and no other hashing
algorithms as shown below:
password required pam_unix.so sha512
other arguments...
This will help ensure that new passwords for local users will be stored using the
sha512 algorithm. Warning:
The hashing algorithms to be used with pam_unix.so are defined with independent module
options. There are at least 7 possible algorithms and likely more algorithms will be
introduced along the time. Due the the number of options and its possible combinations,
the use of multiple hashing algorithm options may bring unexpected behaviors to the
system. For this reason the check will pass only when one hashing algorithm option is
defined and is aligned to the "var_password_hashing_algorithm_pam" variable. The
remediation will ensure the correct option and remove any other extra hashing algorithm
option. | Rationale: | Passwords need to be protected at all times, and encryption is the standard method for
protecting passwords. If passwords are not encrypted, they can be plainly read
(i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm
are no more protected than if they are kept in plain text.
This setting ensures user and group account administration utilities are configured to store
only encrypted representations of passwords. Additionally, the crypt_style
configuration option in /etc/libuser.conf ensures the use of a strong hashing
algorithm that makes password cracking attacks more difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_systemauth | Identifiers: | CCE-85565-0 | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.2 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.13.11 | disa | CCI-000196, CCI-000803, CCI-004062 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0418, 1055, 1402 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(c), IA-5(1)(c), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | pcidss | Req-8.2.1 | os-srg | SRG-OS-000073-GPOS-00041, SRG-OS-000120-GPOS-00061 | stigid | SLES-15-020170 | anssi | R68 | pcidss4 | 8.3.2, 8.3 | stigref | SV-234886r1009625_rule |
| |
|
Rule
Set Password Hashing Rounds in /etc/login.defs
[ref] | In /etc/login.defs , ensure SHA_CRYPT_MIN_ROUNDS and
SHA_CRYPT_MAX_ROUNDS has the minimum value of 5000 .
For example:
SHA_CRYPT_MIN_ROUNDS 5000
SHA_CRYPT_MAX_ROUNDS 5000
Notice that if neither are set, they already have the default value of 5000.
If either is set, they must have the minimum value of 5000. | Rationale: | Passwords need to be protected at all times, and encryption is the standard
method for protecting passwords. If passwords are not encrypted, they can
be plainly read (i.e., clear text) and easily compromised. Passwords
that are encrypted with a weak algorithm are no more protected than if
they are kept in plain text.
Using more hashing rounds makes password cracking attacks more difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_set_password_hashing_min_rounds_logindefs | Identifiers: | CCE-85567-6 | References: | disa | CCI-000803, CCI-004062 | os-srg | SRG-OS-000073-GPOS-00041, SRG-OS-000120-GPOS-00061 | stigid | SLES-15-020190 | stigref | SV-234888r1009627_rule |
| |
|
Group
Protect Accounts by Restricting Password-Based Login
Group contains 1 group and 2 rules |
[ref]
Conventionally, Unix shell accounts are accessed by
providing a username and password to a login program, which tests
these values for correctness using the /etc/passwd and
/etc/shadow files. Password-based login is vulnerable to
guessing of weak passwords, and to sniffing and man-in-the-middle
attacks against passwords entered over a network or at an insecure
console. Therefore, mechanisms for accessing accounts by entering
usernames and passwords should be restricted to those which are
operationally necessary. |
Group
Set Password Expiration Parameters
Group contains 2 rules |
[ref]
The file /etc/login.defs controls several
password-related settings. Programs such as passwd ,
su , and
login consult /etc/login.defs to determine
behavior with regard to password aging, expiration warnings,
and length. See the man page login.defs(5) for more information.
Users should be forced to change their passwords, in order to
decrease the utility of compromised passwords. However, the need to
change passwords often should be balanced against the risk that
users will reuse or write down passwords if forced to change them
too often. Forcing password changes every 90-360 days, depending on
the environment, is recommended. Set the appropriate value as
PASS_MAX_DAYS and apply it to existing accounts with the
-M flag.
The PASS_MIN_DAYS ( -m ) setting prevents password
changes for 7 days after the first change, to discourage password
cycling. If you use this setting, train users to contact an administrator
for an emergency password change in case a new password becomes
compromised. The PASS_WARN_AGE ( -W ) setting gives
users 7 days of warnings at login time that their passwords are about to expire.
For example, for each existing human user USER, expiration parameters
could be adjusted to a 180 day maximum password age, 7 day minimum password
age, and 7 day warning period with the following command:
$ sudo chage -M 180 -m 7 -W 7 USER
|
Rule
Set Password Minimum Length in login.defs
[ref] | To specify password length requirements for new accounts, edit the file
/etc/login.defs and add or correct the following line:
PASS_MIN_LEN 15
The DoD requirement is 15 .
The FISMA requirement is 12 .
The profile requirement is
15 .
If a program consults /etc/login.defs and also another PAM module
(such as pam_pwquality ) during a password change operation, then
the most restrictive must be satisfied. See PAM section for more
information about enforcing password quality requirements. | Rationale: | Requiring a minimum password length makes password
cracking attacks more difficult by ensuring a larger
search space. However, any security benefit from an onerous requirement
must be carefully weighed against usability problems, support costs, or counterproductive
behavior that may result. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_minlen_login_defs | Identifiers: | CCE-91168-5 | References: | cis-csc | 1, 12, 15, 16, 5 | cjis | 5.6.2.1 | cobit5 | DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10 | cui | 3.5.7 | disa | CCI-004066 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1 | ism | 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561 | iso27001-2013 | A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3 | nist | IA-5(f), IA-5(1)(a), CM-6(a) | nist-csf | PR.AC-1, PR.AC-6, PR.AC-7 | os-srg | SRG-OS-000078-GPOS-00046 | anssi | R31 |
| |
|
Rule
Set Root Account Password Maximum Age
[ref] | Configure the root account to enforce a 365-day maximum password lifetime restriction by running the following command:
$ sudo chage -M 365 root
| Rationale: | Any password, no matter how complex, can eventually be cracked. Therefore,
passwords need to be changed periodically. If the operating system does
not limit the lifetime of passwords and force users to change their
passwords, there is the risk that the operating system passwords could be
compromised. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_set_max_life_root | References: | | |
|
Group
File Permissions and Masks
Group contains 1 group and 7 rules |
[ref]
Traditional Unix security relies heavily on file and
directory permissions to prevent unauthorized users from reading or
modifying files to which they should not have access.
Several of the commands in this section search filesystems
for files or directories with certain characteristics, and are
intended to be run on every local partition on a given system.
When the variable PART appears in one of the commands below,
it means that the command is intended to be run repeatedly, with the
name of each local partition substituted for PART in turn.
The following command prints a list of all xfs partitions on the local
system, which is the default filesystem for SUSE Linux Enterprise 15
installations:
$ mount -t xfs | awk '{print $3}'
For any systems that use a different
local filesystem type, modify this command as appropriate. |
Group
Verify Permissions on Important Files and
Directories
Group contains 7 rules |
[ref]
Permissions for many files on a system must be set
restrictively to ensure sensitive information is properly protected.
This section discusses important
permission restrictions which can be verified
to ensure that no harmful discrepancies have
arisen. |
Rule
Ensure All World-Writable Directories Are Owned by root User
[ref] | All directories in local partitions which are world-writable should be owned by root.
If any world-writable directories are not owned by root, this should be investigated.
Following this, the files should be deleted or assigned to root user. | Rationale: | Allowing a user account to own a world-writable directory is undesirable because it allows the
owner of that directory to remove or replace any files that may be placed in the directory by
other users. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_dir_perms_world_writable_root_owned | Identifiers: | CCE-91239-4 | References: | disa | CCI-000366, CCI-001090 | os-srg | SRG-OS-000480-GPOS-00227, SRG-OS-000138-GPOS-00069 | anssi | R54 |
| |
|
Rule
Verify that All World-Writable Directories Have Sticky Bits Set
[ref] | When the so-called 'sticky bit' is set on a directory, only the owner of a given file may
remove that file from the directory. Without the sticky bit, any user with write access to a
directory may remove any file in the directory. Setting the sticky bit prevents users from
removing each other's files. In cases where there is no reason for a directory to be
world-writable, a better solution is to remove that permission rather than to set the sticky
bit. However, if a directory is used by a particular application, consult that application's
documentation instead of blindly changing modes.
To set the sticky bit on a world-writable directory DIR, run the following command:
$ sudo chmod +t DIR
Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of directories present on the system. It is
not a problem in most cases, but especially systems with a large number of directories can
be affected. See https://access.redhat.com/articles/6999111 . | Rationale: | Failing to set the sticky bit on public directories allows unauthorized users to delete files
in the directory structure.
The only authorized public directories are those temporary directories supplied with the
system, or those designed to be temporary file repositories. The setting is normally reserved
for directories used by the system, by users for temporary file storage (such as /tmp ),
and for directories requiring global read/write access. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_dir_perms_world_writable_sticky_bits | Identifiers: | CCE-83282-4 | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | disa | CCI-001090 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | os-srg | SRG-OS-000138-GPOS-00069 | stigid | SLES-15-010300 | cis | 1.1.22 | anssi | R54 | pcidss4 | 2.2.6, 2.2 | stigref | SV-234828r958524_rule |
| |
|
Rule
Ensure All SGID Executables Are Authorized
[ref] | The SGID (set group id) bit should be set only on files that were installed via authorized
means. A straightforward means of identifying unauthorized SGID files is determine if any were
not installed as part of an RPM package, which is cryptographically verified. Investigate the
origin of any unpackaged SGID files. This configuration check considers authorized SGID files
those which were installed via RPM. It is assumed that when an individual has sudo access to
install an RPM and all packages are signed with an organizationally-recognized GPG key, the
software should be considered an approved package on the system. Any SGID file not deployed
through an RPM will be flagged for further review. Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111 . | Rationale: | Executable files with the SGID permission run with the privileges of the owner of the file.
SGID files of uncertain provenance could allow for unprivileged users to elevate privileges.
The presence of these files should be strictly controlled on the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_sgid | Identifiers: | CCE-91175-0 | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | cis | 6.1.12 | anssi | R56 |
| |
|
Rule
Ensure All SUID Executables Are Authorized
[ref] | The SUID (set user id) bit should be set only on files that were installed via authorized
means. A straightforward means of identifying unauthorized SUID files is determine if any were
not installed as part of an RPM package, which is cryptographically verified. Investigate the
origin of any unpackaged SUID files. This configuration check considers authorized SUID files
those which were installed via RPM. It is assumed that when an individual has sudo access to
install an RPM and all packages are signed with an organizationally-recognized GPG key, the
software should be considered an approved package on the system. Any SUID file not deployed
through an RPM will be flagged for further review. Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111 . | Rationale: | Executable files with the SUID permission run with the privileges of the owner of the file.
SUID files of uncertain provenance could allow for unprivileged users to elevate privileges.
The presence of these files should be strictly controlled on the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_suid | Identifiers: | CCE-91174-3 | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | cis | 6.1.11 | anssi | R56 |
| |
|
Rule
Ensure No World-Writable Files Exist
[ref] | It is generally a good idea to remove global (other) write access to a file when it is
discovered. However, check with documentation for specific applications before making changes.
Also, monitor for recurring world-writable files, as these may be symptoms of a misconfigured
application or user account. Finally, this applies to real files and not virtual files that
are a part of pseudo file systems such as sysfs or procfs . Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111 . | Rationale: | Data in world-writable files can be modified by any user on the system. In almost all
circumstances, files can be configured using a combination of user and group permissions to
support whatever legitimate access is needed without the risk caused by world-writable files. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_world_writable | Identifiers: | CCE-91233-7 | References: | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | isa-62443-2009 | 4.3.3.7.3 | isa-62443-2013 | SR 2.1, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.DS-5 | cis | 6.1.8 | anssi | R54 | pcidss4 | 2.2.6, 2.2 |
| |
|
Rule
Ensure All Files Are Owned by a Group
[ref] | If any file is not group-owned by a valid defined group, the cause of the lack of
group-ownership must be investigated. Following this, those files should be deleted or
assigned to an appropriate group. The groups need to be defined in /etc/group
or in /usr/lib/group if nss-altfiles are configured to be used
in /etc/nsswitch.conf .
Locate the mount points related to local devices by the following command:
$ findmnt -n -l -k -it $(awk '/nodev/ { print $2 }' /proc/filesystems | paste -sd,)
For all mount points listed by the previous command, it is necessary to search for files which
do not belong to a valid group using the following command:
$ sudo find MOUNTPOINT -xdev -nogroup 2>/dev/null
Warning:
This rule only considers local groups as valid groups.
If you have your groups defined outside /etc/group or /usr/lib/group , the rule won't consider those. Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111 . | Rationale: | Unowned files do not directly imply a security problem, but they are generally a sign that
something is amiss. They may be caused by an intruder, by incorrect software installation or
draft software removal, or by failure to remove all files belonging to a deleted account, or
other similar cases. The files should be repaired so they will not cause problems when
accounts are created in the future, and the cause should be discovered and addressed. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_ungroupowned | Identifiers: | CCE-85658-3 | References: | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 3, 5 | cobit5 | APO01.06, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.02, DSS06.03, DSS06.06, DSS06.10 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 5.2 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.18.1.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.DS-5, PR.PT-3 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | SLES-15-040410 | cis | 6.1.10 | anssi | R53 | pcidss4 | 2.2.6, 2.2 | stigref | SV-235029r991589_rule |
| |
|
Rule
Ensure All Files Are Owned by a User
[ref] | If any files are not owned by a user, then the cause of their lack of ownership should be
investigated. Following this, the files should be deleted or assigned to an appropriate user.
Locate the mount points related to local devices by the following command:
$ findmnt -n -l -k -it $(awk '/nodev/ { print $2 }' /proc/filesystems | paste -sd,)
For all mount points listed by the previous command, it is necessary to search for files which
do not belong to a valid user using the following command:
$ sudo find MOUNTPOINT -xdev -nouser 2>/dev/null
Warning:
For this rule to evaluate centralized user accounts, getent must be working properly
so that running the command getent passwd returns a list of all users in your organization.
If using the System Security Services Daemon (SSSD), enumerate = true must be configured
in your organization's domain to return a complete list of users Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111 . | Rationale: | Unowned files do not directly imply a security problem, but they are generally a sign that
something is amiss. They may be caused by an intruder, by incorrect software installation or
draft software removal, or by failure to remove all files belonging to a deleted account, or
other similar cases. The files should be repaired so they will not cause problems when
accounts are created in the future, and the cause should be discovered and addressed. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_no_files_unowned_by_user | Identifiers: | CCE-85657-5 | References: | cis-csc | 11, 12, 13, 14, 15, 16, 18, 3, 5, 9 | cobit5 | APO01.06, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 5.2, SR 7.6 | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | nist | CM-6(a), AC-6(1) | nist-csf | PR.AC-4, PR.AC-6, PR.DS-5, PR.IP-1, PR.PT-3 | os-srg | SRG-OS-000480-GPOS-00227 | stigid | SLES-15-040400 | cis | 6.1.9 | anssi | R53 | pcidss4 | 2.2.6, 2.2 | stigref | SV-235028r991589_rule |
| |
|
Group
Services
Group contains 10 groups and 13 rules |
[ref]
The best protection against vulnerable software is running less software. This section describes how to review
the software which SUSE Linux Enterprise 15 installs on a system and disable software which is not needed. It
then enumerates the software packages installed on a default SUSE Linux Enterprise 15 system and provides guidance about which
ones can be safely disabled.
SUSE Linux Enterprise 15 provides a convenient minimal install option that essentially installs the bare necessities for a functional
system. When building SUSE Linux Enterprise 15 systems, it is highly recommended to select the minimal packages and then build up
the system from there. |
Group
DHCP
Group contains 1 group and 1 rule |
[ref]
The Dynamic Host Configuration Protocol (DHCP) allows
systems to request and obtain an IP address and other configuration
parameters from a server.
This guide recommends configuring networking on clients by manually editing
the appropriate files under /etc/sysconfig . Use of DHCP can make client
systems vulnerable to compromise by rogue DHCP servers, and should be avoided
unless necessary. If using DHCP is necessary, however, there are best practices
that should be followed to minimize security risk. |
Group
Disable DHCP Server
Group contains 1 rule |
[ref]
The DHCP server dhcpd is not installed or activated by
default. If the software was installed and activated, but the
system does not need to act as a DHCP server, it should be disabled
and removed. |
Rule
Uninstall DHCP Server Package
[ref] | If the system does not need to act as a DHCP server,
the dhcp package can be uninstalled.
The dhcp-server package can be removed with the following command:
$ sudo zypper remove dhcp-server
| Rationale: | Removing the DHCP server ensures that it cannot be easily or
accidentally reactivated and disrupt network operation. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_dhcp_removed | Identifiers: | CCE-85759-9 | References: | cis-csc | 11, 14, 3, 9 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.IP-1, PR.PT-3 | cis | 2.2.5 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Group
Mail Server Software
Group contains 1 rule |
[ref]
Mail servers are used to send and receive email over the network.
Mail is a very common service, and Mail Transfer Agents (MTAs) are obvious
targets of network attack.
Ensure that systems are not running MTAs unnecessarily,
and configure needed MTAs as defensively as possible.
Very few systems at any site should be configured to directly receive email over the
network. Users should instead use mail client programs to retrieve email
from a central server that supports protocols such as IMAP or POP3.
However, it is normal for most systems to be independently capable of sending email,
for instance so that cron jobs can report output to an administrator.
Most MTAs, including Postfix, support a submission-only mode in which mail can be sent from
the local system to a central site MTA (or directly delivered to a local account),
but the system still cannot receive mail directly over a network.
The alternatives program in SUSE Linux Enterprise 15 permits selection of other mail server software
(such as Sendmail), but Postfix is the default and is preferred.
Postfix was coded with security in mind and can also be more effectively contained by
SELinux as its modular design has resulted in separate processes performing specific actions.
More information is available on its website,
http://www.postfix.org. |
Rule
Uninstall Sendmail Package
[ref] | Sendmail is not the default mail transfer agent and is
not installed by default.
The sendmail package can be removed with the following command:
$ sudo zypper remove sendmail
| Rationale: | The sendmail software was not developed with security in mind and
its design prevents it from being effectively contained by SELinux. Postfix
should be used instead. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_sendmail_removed | Identifiers: | CCE-85761-5 | References: | cis-csc | 11, 14, 3, 9 | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06 | disa | CCI-000366, CCI-000381 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6 | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.IP-1, PR.PT-3 | os-srg | SRG-OS-000480-GPOS-00227, SRG-OS-000095-GPOS-00049 | anssi | R62 |
| |
|
Group
Obsolete Services
Group contains 6 groups and 11 rules |
[ref]
This section discusses a number of network-visible
services which have historically caused problems for system
security, and for which disabling or severely limiting the service
has been the best available guidance for some time. As a result of
this, many of these services are not installed as part of SUSE Linux Enterprise 15
by default.
Organizations which are running these services should
switch to more secure equivalents as soon as possible.
If it remains absolutely necessary to run one of
these services for legacy reasons, care should be taken to restrict
the service as much as possible, for instance by configuring host
firewall software such as iptables to restrict access to the
vulnerable service to only those remote hosts which have a known
need to use it. |
Group
Xinetd
Group contains 1 rule |
[ref]
The xinetd service acts as a dedicated listener for some
network services (mostly, obsolete ones) and can be used to provide access
controls and perform some logging. It has been largely obsoleted by other
features, and it is not installed by default. The older Inetd service
is not even available as part of SUSE Linux Enterprise 15. |
Rule
Uninstall xinetd Package
[ref] | The xinetd package can be removed with the following command:
$ sudo zypper remove xinetd
| Rationale: | Removing the xinetd package decreases the risk of the
xinetd service's accidental (or intentional) activation. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_package_xinetd_removed | Identifiers: | CCE-91436-6 | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | disa | CCI-000305 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | cis | 2.1.1 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Group
NIS
Group contains 2 rules |
[ref]
The Network Information Service (NIS), also known as 'Yellow
Pages' (YP), and its successor NIS+ have been made obsolete by
Kerberos, LDAP, and other modern centralized authentication
services. NIS should not be used because it suffers from security
problems inherent in its design, such as inadequate protection of
important authentication information. |
Rule
Remove NIS Client
[ref] | The Network Information Service (NIS), formerly known as Yellow Pages,
is a client-server directory service protocol used to distribute system configuration
files. The NIS client (ypbind ) was used to bind a system to an NIS server
and receive the distributed configuration files. | Rationale: | The NIS service is inherently an insecure system that has been vulnerable
to DOS attacks, buffer overflows and has poor authentication for querying
NIS maps. NIS generally has been replaced by such protocols as Lightweight
Directory Access Protocol (LDAP). It is recommended that the service be
removed. | Severity: | unknown | Rule ID: | xccdf_org.ssgproject.content_rule_package_ypbind_removed | Identifiers: | CCE-91159-4 | References: | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | cis | 2.3.1 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Rule
Uninstall ypserv Package
[ref] | The ypserv package can be removed with the following command:
$ sudo zypper remove ypserv
| Rationale: | The NIS service provides an unencrypted authentication service which does
not provide for the confidentiality and integrity of user passwords or the
remote session.
Removing the ypserv package decreases the risk of the accidental
(or intentional) activation of NIS or NIS+ services. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_package_ypserv_removed | Identifiers: | CCE-91160-2 | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | disa | CCI-000381 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a), IA-5(1)(c) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | pcidss | Req-2.2.2 | os-srg | SRG-OS-000095-GPOS-00049 | cis | 2.2.18 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Group
Rlogin, Rsh, and Rexec
Group contains 2 rules |
[ref]
The Berkeley r-commands are legacy services which
allow cleartext remote access and have an insecure trust
model. |
Rule
Uninstall rsh-server Package
[ref] | The rsh-server package can be removed with the following command:
$ sudo zypper remove rsh-server
| Rationale: | The rsh-server service provides unencrypted remote access service which does not
provide for the confidentiality and integrity of user passwords or the remote session and has very weak
authentication. If a privileged user were to login using this service, the privileged user password
could be compromised. The rsh-server package provides several obsolete and insecure
network services. Removing it decreases the risk of those services' accidental (or intentional)
activation. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_package_rsh-server_removed | Identifiers: | CCE-91425-9 | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | disa | CCI-000381 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a), IA-5(1)(c) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | os-srg | SRG-OS-000095-GPOS-00049 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Rule
Uninstall rsh Package
[ref] |
The rsh package contains the client commands
for the rsh services | Rationale: | These legacy clients contain numerous security exposures and have
been replaced with the more secure SSH package. Even if the server is removed,
it is best to ensure the clients are also removed to prevent users from
inadvertently attempting to use these commands and therefore exposing
their credentials. Note that removing the rsh package removes
the clients for rsh ,rcp , and rlogin . | Severity: | unknown | Rule ID: | xccdf_org.ssgproject.content_rule_package_rsh_removed | Identifiers: | CCE-85760-7 | References: | cui | 3.1.13 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | iso27001-2013 | A.8.2.3, A.13.1.1, A.13.2.1, A.13.2.3, A.14.1.2, A.14.1.3 | cis | 2.3.2 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Group
Chat/Messaging Services
Group contains 2 rules |
[ref]
The talk software makes it possible for users to send and receive messages
across systems through a terminal session. |
Rule
Uninstall talk-server Package
[ref] | The talk-server package can be removed with the following command: $ sudo zypper remove talk-server
| Rationale: | The talk software presents a security risk as it uses unencrypted protocols
for communications. Removing the talk-server package decreases the
risk of the accidental (or intentional) activation of talk services. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_talk-server_removed | Identifiers: | CCE-91433-3 | References: | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Rule
Uninstall talk Package
[ref] | The talk package contains the client program for the
Internet talk protocol, which allows the user to chat with other users on
different systems. Talk is a communication program which copies lines from one
terminal to the terminal of another user.
The talk package can be removed with the following command:
$ sudo zypper remove talk
| Rationale: | The talk software presents a security risk as it uses unencrypted protocols
for communications. Removing the talk package decreases the
risk of the accidental (or intentional) activation of talk client program. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_talk_removed | Identifiers: | CCE-91432-5 | References: | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | cis | 2.3.3 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Group
Telnet
Group contains 2 rules |
[ref]
The telnet protocol does not provide confidentiality or integrity
for information transmitted on the network. This includes authentication
information such as passwords. Organizations which use telnet should be
actively working to migrate to a more secure protocol. |
Rule
Uninstall telnet-server Package
[ref] | The telnet-server package can be removed with the following command:
$ sudo zypper remove telnet-server
| Rationale: | It is detrimental for operating systems to provide, or install by default,
functionality exceeding requirements or mission objectives. These
unnecessary capabilities are often overlooked and therefore may remain
unsecure. They increase the risk to the platform by providing additional
attack vectors.
The telnet service provides an unencrypted remote access service which does
not provide for the confidentiality and integrity of user passwords or the
remote session. If a privileged user were to login using this service, the
privileged user password could be compromised.
Removing the telnet-server package decreases the risk of the
telnet service's accidental (or intentional) activation. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_package_telnet-server_removed | Identifiers: | CCE-83273-3 | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | disa | CCI-000381 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | pcidss | Req-2.2.2 | os-srg | SRG-OS-000095-GPOS-00049 | stigid | SLES-15-010180 | cis | 2.2.19 | anssi | R62 | pcidss4 | 2.2.4, 2.2 | stigref | SV-234818r987796_rule |
| |
|
Rule
Remove telnet Clients
[ref] | The telnet client allows users to start connections to other systems via
the telnet protocol. | Rationale: | The telnet protocol is insecure and unencrypted. The use
of an unencrypted transmission medium could allow an unauthorized user
to steal credentials. The ssh package provides an
encrypted session and stronger security and is included in SUSE Linux Enterprise 15. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_package_telnet_removed | Identifiers: | CCE-91434-1 | References: | cui | 3.1.13 | hipaa | 164.308(a)(4)(i), 164.308(b)(1), 164.308(b)(3), 164.310(b), 164.312(e)(1), 164.312(e)(2)(ii) | iso27001-2013 | A.8.2.3, A.13.1.1, A.13.2.1, A.13.2.3, A.14.1.2, A.14.1.3 | cis | 2.3.4 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Group
TFTP Server
Group contains 2 rules |
[ref]
TFTP is a lightweight version of the FTP protocol which has
traditionally been used to configure networking equipment. However,
TFTP provides little security, and modern versions of networking
operating systems frequently support configuration via SSH or other
more secure protocols. A TFTP server should be run only if no more
secure method of supporting existing equipment can be
found. |
Rule
Uninstall tftp-server Package
[ref] | The tftp-server package can be removed with the following command: $ sudo zypper remove tftp-server
| Rationale: | Removing the tftp-server package decreases the risk of the accidental
(or intentional) activation of tftp services.
If TFTP is required for operational support (such as transmission of router
configurations), its use must be documented with the Information Systems
Securty Manager (ISSM), restricted to only authorized personnel, and have
access control rules established. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_package_tftp-server_removed | Identifiers: | CCE-91227-9 | References: | cis-csc | 11, 12, 14, 15, 3, 8, 9 | cobit5 | APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.04, DSS05.02, DSS05.03, DSS05.05, DSS06.06 | disa | CCI-000366 | isa-62443-2009 | 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6 | iso27001-2013 | A.11.2.6, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.2.1, A.6.2.2, A.9.1.2 | nist | CM-7(a), CM-7(b), CM-6(a) | nist-csf | PR.AC-3, PR.IP-1, PR.PT-3, PR.PT-4 | os-srg | SRG-OS-000480-GPOS-00227 | anssi | R62 | pcidss4 | 2.2.4, 2.2 |
| |
|
Rule
Remove tftp Daemon
[ref] | Trivial File Transfer Protocol (TFTP) is a simple file transfer protocol,
typically used to automatically transfer configuration or boot files between systems.
TFTP does not support authentication and can be easily hacked. The package
tftp is a client program that allows for connections to a tftp server. | Rationale: | It is recommended that TFTP be removed, unless there is a specific need
for TFTP (such as a boot server). In that case, use extreme caution when configuring
the services. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_package_tftp_removed | Identifiers: | CCE-91158-6 | References: | | |
|