| Group
Guide to the Secure Configuration of SUSE Linux Enterprise 16
Group contains 24 groups and 22 rules |
| Group
System Settings
Group contains 18 groups and 15 rules |
[ref]
Contains rules that check correct system settings. |
| Group
Installing and Maintaining Software
Group contains 4 groups and 3 rules |
[ref]
The following sections contain information on
security-relevant choices during the initial operating system
installation process and the setup of software
updates. |
| Group
System and Software Integrity
Group contains 3 groups and 3 rules |
[ref]
System and software integrity can be gained by installing antivirus, increasing
system encryption strength with FIPS, verifying installed software, enabling SELinux,
installing an Intrusion Prevention System, etc. However, installing or enabling integrity
checking tools cannot prevent intrusions, but they can detect that an intrusion
may have occurred. Requirements for integrity checking may be highly dependent on
the environment in which the system will be used. Snapshot-based approaches such
as AIDE may induce considerable overhead in the presence of frequent software updates. |
| Group
Software Integrity Checking
Group contains 1 group and 2 rules |
[ref]
Both the AIDE (Advanced Intrusion Detection Environment)
software and the RPM package management system provide
mechanisms for verifying the integrity of installed software.
AIDE uses snapshots of file metadata (such as hashes) and compares these
to current system files in order to detect changes.
The RPM package management system can conduct integrity
checks by comparing information in its metadata database with
files installed on the system. |
| Group
Verify Integrity with AIDE
Group contains 2 rules |
[ref]
AIDE conducts integrity checks by comparing information about
files with previously-gathered information. Ideally, the AIDE database is
created immediately after initial system configuration, and then again after any
software update. AIDE is highly configurable, with further configuration
information located in /usr/share/doc/aide-VERSION
. |
Rule
Build and Test AIDE Database
[ref] | Run the following command to generate a new database:
$ sudo /usr/bin/aide --init
By default, the database will be written to the file
/var/lib/aide/aide.db.new.
Storing the database, the configuration file /etc/aide.conf, and the binary
/usr/bin/aide
(or hashes of these files), in a secure location (such as on read-only media) provides additional assurance about their integrity.
The newly-generated database can be installed as follows:
$ sudo cp /var/lib/aide/aide.db.new /var/lib/aide/aide.db
To initiate a manual check, run the following command:
$ sudo /usr/bin/aide --check
If this check produces any unexpected output, investigate. Warning:
In RHEL Image Mode (bootc) systems, the AIDE database must be regenerated after each system update.
Image Mode systems receive updates through new container images that may include modified files.
After applying system updates, run the following commands to regenerate the AIDE database:
$ sudo /usr/bin/aide --init
Then replace the existing database:
$ sudo cp /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz
Failure to regenerate the AIDE database after updates will result in false positive alerts
for legitimate system changes introduced by the update process. | | Rationale: | For AIDE to be effective, an initial database of "known-good" information about files
must be captured and it should be able to be verified against the installed files. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_aide_build_database | | Identifiers: | CCE-95701-9 | | References: | | cis-csc | 1, 11, 12, 13, 14, 15, 16, 2, 3, 5, 7, 8, 9 | | cjis | 5.10.1.3 | | cobit5 | APO01.06, BAI01.06, BAI02.01, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS03.05, DSS04.07, DSS05.02, DSS05.03, DSS05.05, DSS05.07, DSS06.02, DSS06.06 | | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4 | | isa-62443-2013 | SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 4.1, SR 6.2, SR 7.6 | | iso27001-2013 | A.11.2.4, A.12.1.2, A.12.2.1, A.12.4.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.14.2.7, A.15.2.1, A.8.2.3 | | nist | CM-6(a) | | nist-csf | DE.CM-1, DE.CM-7, PR.DS-1, PR.DS-6, PR.DS-8, PR.IP-1, PR.IP-3 | | pcidss | Req-11.5 | | os-srg | SRG-OS-000445-GPOS-00199 | | anssi | R76, R79 | | pcidss4 | 11.5.2 | | suse-base-sle16 | SLES-16-16016700 |
| |
|
Rule
Configure Systemd Timer Execution of AIDE
[ref] | At a minimum, AIDE should be configured to run a weekly scan.
To implement a systemd service and a timer unit to run the service periodically:
For example, if a systemd timer is expected to be started every day at 5AM
OnCalendar=*-*-* 05:00:0
[Timer] section in the timer unit and
a Unit section starting the AIDE check service unit should be referred. | | Rationale: | AIDE provides a means to check if unauthorized changes are made to the system.
AIDE itself does not setup a periodic execution, so in order to detect unauthorized
changes a systemd service to run the check and a systemd timer to take care
of periodical execution of that systemd service should be defined. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_aide_periodic_checking_systemd_timer | | Identifiers: | CCE-95702-7 | | References: | | cis-csc | 1, 11, 12, 13, 14, 15, 16, 2, 3, 5, 7, 8, 9 | | cjis | 5.10.1.3 | | cobit5 | APO01.06, BAI01.06, BAI02.01, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS03.05, DSS04.07, DSS05.02, DSS05.03, DSS05.05, DSS05.07, DSS06.02, DSS06.06 | | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4 | | isa-62443-2013 | SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 4.1, SR 6.2, SR 7.6 | | iso27001-2013 | A.11.2.4, A.12.1.2, A.12.2.1, A.12.4.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.14.2.7, A.15.2.1, A.8.2.3 | | nist | SI-7, SI-7(1), CM-6(a) | | nist-csf | DE.CM-1, DE.CM-7, PR.DS-1, PR.DS-6, PR.DS-8, PR.IP-1, PR.IP-3 | | pcidss | Req-11.5 | | os-srg | SRG-OS-000363-GPOS-00150, SRG-OS-000446-GPOS-00200, SRG-OS-000447-GPOS-00201 | | anssi | R76 | | pcidss4 | 11.5.2 | | suse-base-sle16 | SLES-16-16016700 |
| |
|
| Group
Operating System Vendor Support and Certification
Group contains 1 rule |
[ref]
The assurance of a vendor to provide operating system support and maintenance
for their product is an important criterion to ensure product stability and
security over the life of the product. A certified product that follows the
necessary standards and government certification requirements guarantees that
known software vulnerabilities will be remediated, and proper guidance for
protecting and securing the operating system will be given. |
Rule
The Installed Operating System Is Vendor Supported
[ref] | The installed operating system must be maintained by a vendor.
SUSE Linux Enterprise is supported by SUSE. As the SUSE Linux Enterprise
vendor, SUSE is responsible for providing security patches. Warning:
There is no remediation besides switching to a different operating system. | | Rationale: | An operating system is considered "supported" if the vendor continues to
provide security patches for the product. With an unsupported release, it
will not be possible to resolve any security issue discovered in the system
software. | | Severity: | high | | Rule ID: | xccdf_org.ssgproject.content_rule_installed_OS_is_vendor_supported | | Identifiers: | CCE-95709-2 | | References: | | cis-csc | 18, 20, 4 | | cobit5 | APO12.01, APO12.02, APO12.03, APO12.04, BAI03.10, DSS05.01, DSS05.02 | | isa-62443-2009 | 4.2.3, 4.2.3.12, 4.2.3.7, 4.2.3.9 | | iso27001-2013 | A.12.6.1, A.14.2.3, A.16.1.3, A.18.2.2, A.18.2.3 | | nist | CM-6(a), MA-6, SA-13(a) | | nist-csf | ID.RA-1, PR.IP-12 | | os-srg | SRG-OS-000480-GPOS-00227 | | suse-base-sle16 | SLES-16-16016005 |
| |
|
| Group
Account and Access Control
Group contains 3 groups and 3 rules |
[ref]
In traditional Unix security, if an attacker gains
shell access to a certain login account, they can perform any action
or access any file to which that account has access. Therefore,
making it more difficult for unauthorized people to gain shell
access to accounts, particularly to privileged accounts, is a
necessary part of securing a system. This section introduces
mechanisms for restricting access to accounts under
SUSE Linux Enterprise 16. |
| Group
Protect Accounts by Configuring PAM
Group contains 1 rule |
[ref]
PAM, or Pluggable Authentication Modules, is a system
which implements modular authentication for Linux programs. PAM provides
a flexible and configurable architecture for authentication, and it should be configured
to minimize exposure to unnecessary risk. This section contains
guidance on how to accomplish that.
PAM is implemented as a set of shared objects which are
loaded and invoked whenever an application wishes to authenticate a
user. Typically, the application must be running as root in order
to take advantage of PAM, because PAM's modules often need to be able
to access sensitive stores of account information, such as /etc/shadow.
Traditional privileged network listeners
(e.g. sshd) or SUID programs (e.g. sudo) already meet this
requirement. An SUID root application, userhelper, is provided so
that programs which are not SUID or privileged themselves can still
take advantage of PAM.
PAM looks in the directory /etc/pam.d for
application-specific configuration information. For instance, if
the program login attempts to authenticate a user, then PAM's
libraries follow the instructions in the file /etc/pam.d/login
to determine what actions should be taken.
One very important file in /etc/pam.d is
/etc/pam.d/system-auth. This file, which is included by
many other PAM configuration files, defines 'default' system authentication
measures. Modifying this file is a good way to make far-reaching
authentication changes, for instance when implementing a
centralized authentication service. Warning:
Be careful when making changes to PAM's configuration files.
The syntax for these files is complex, and modifications can
have unexpected consequences. The default configurations shipped
with applications should be sufficient for most users. |
Rule
Ensure PAM Displays Last Logon/Access Notification
[ref] | To configure the system to notify users of last logon/access using pam_lastlog,
add or correct the pam_lastlog settings in /etc/pam.d/postlogin-session
to include showfailed option, such as:
session optional pam_lastlog2.so showfailed
And make sure that the silent option is not set for this specific line. Warning:
If the system relies on authselect tool to manage PAM settings, the remediation
will also use authselect tool. However, if any manual modification was made in
PAM files, the authselect integrity check will fail and the remediation will be
aborted in order to preserve intentional changes. In this case, an informative message will
be shown in the remediation report. Warning:
authselect contains an authselect feature to easily and properly enable Last Logon
notifications with pam_lastlog2.so module. If a custom profile was created and used
in the system before this authselect feature was available, the new feature can't be used
with this custom profile and the remediation will fail. In this case, the custom profile
should be recreated or manually updated. | | Rationale: | Users need to be aware of activity that occurs regarding their account. Providing users with
information regarding the number of unsuccessful attempts that were made to login to their
account allows the user to determine if any unauthorized activity has occurred and gives them
an opportunity to notify administrators. | | Severity: | low | | Rule ID: | xccdf_org.ssgproject.content_rule_display_login_attempts | | Identifiers: | CCE-95704-3 | | References: | | cis-csc | 1, 12, 15, 16 | | cjis | 5.5.2 | | cobit5 | DSS05.04, DSS05.10, DSS06.10 | | isa-62443-2009 | 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9 | | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9 | | iso27001-2013 | A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3 | | nist | AC-9, AC-9(1) | | nist-csf | PR.AC-7 | | pcidss | Req-10.2.4 | | os-srg | SRG-OS-000480-GPOS-00227 | | pcidss4 | 10.2.1.4, 10.2.1, 10.2 | | suse-base-sle16 | SLES-16-16016515 |
| |
|
| Group
Protect Accounts by Restricting Password-Based Login
Group contains 1 group and 2 rules |
[ref]
Conventionally, Unix shell accounts are accessed by
providing a username and password to a login program, which tests
these values for correctness using the /etc/passwd and
/etc/shadow files. Password-based login is vulnerable to
guessing of weak passwords, and to sniffing and man-in-the-middle
attacks against passwords entered over a network or at an insecure
console. Therefore, mechanisms for accessing accounts by entering
usernames and passwords should be restricted to those which are
operationally necessary. |
| Group
Restrict Root Logins
Group contains 2 rules |
[ref]
Direct root logins should be allowed only for emergency use.
In normal situations, the administrator should access the system
via a unique unprivileged account, and then use su or sudo to execute
privileged commands. Discouraging administrators from accessing the
root account directly ensures an audit trail in organizations with
multiple administrators. Locking down the channels through which
root can connect directly also reduces opportunities for
password-guessing against the root account. The login program
uses the file /etc/securetty to determine which interfaces
should allow root logins.
The virtual devices /dev/console
and /dev/tty* represent the system consoles (accessible via
the Ctrl-Alt-F1 through Ctrl-Alt-F6 keyboard sequences on a default
installation). The default securetty file also contains /dev/vc/*.
These are likely to be deprecated in most environments, but may be retained
for compatibility. Root should also be prohibited from connecting
via network protocols. Other sections of this document
include guidance describing how to prevent root from logging in via SSH. |
Rule
Ensure that System Accounts Do Not Run a Shell Upon Login
[ref] | Some accounts are not associated with a human user of the system, and exist to perform some
administrative functions. Should an attacker be able to log into these accounts, they should
not be granted access to a shell.
The login shell for each local account is stored in the last field of each line in
/etc/passwd. System accounts are those user accounts with a user ID less than
1000. The user ID is stored in the third field. If any system account
other than root has a login shell, disable it with the command:
$ sudo usermod -s /sbin/nologin account
Warning:
Do not perform the steps in this section on the root account. Doing so might cause the
system to become inaccessible. | | Rationale: | Ensuring shells are not given to system accounts upon login makes it more difficult for
attackers to make use of system accounts. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_no_shelllogin_for_systemaccounts | | Identifiers: | CCE-95711-8 | | References: | | cis-csc | 1, 12, 13, 14, 15, 16, 18, 3, 5, 7, 8 | | cobit5 | DSS01.03, DSS03.05, DSS05.04, DSS05.05, DSS05.07, DSS06.03 | | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | | isa-62443-2013 | SR 1.1, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 6.2 | | iso27001-2013 | A.12.4.1, A.12.4.3, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | | nist | AC-6, CM-6(a), CM-6(b), CM-6.1(iv) | | nist-csf | DE.CM-1, DE.CM-3, PR.AC-1, PR.AC-4, PR.AC-6 | | os-srg | SRG-OS-000480-GPOS-00227 | | ism | 1491 | | pcidss4 | 8.2.2, 8.2 |
| |
|
Rule
Restrict Serial Port Root Logins
[ref] | To restrict root logins on serial ports,
ensure lines of this form do not appear in /etc/securetty:
ttyS0
ttyS1
| | Rationale: | Preventing direct root login to serial port interfaces
helps ensure accountability for actions taken on the systems
using the root account. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_restrict_serial_port_logins | | Identifiers: | CCE-95713-4 | | References: | | cis-csc | 12, 13, 14, 15, 16, 18, 3, 5 | | cobit5 | APO01.06, DSS05.04, DSS05.07, DSS06.02 | | cui | 3.1.1, 3.1.5 | | hipaa | 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii) | | isa-62443-2009 | 4.3.3.7.3 | | isa-62443-2013 | SR 2.1, SR 5.2 | | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | | nerc-cip | CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2 | | nist | AC-6, CM-6(a) | | nist-csf | PR.AC-4, PR.DS-5 | | suse-base-sle16 | SLES-16-16016010 |
| |
|
| Group
GRUB2 bootloader configuration
Group contains 2 rules |
[ref]
During the boot process, the boot loader is
responsible for starting the execution of the kernel and passing
options to it. The boot loader allows for the selection of
different kernels - possibly on different partitions or media.
The default SUSE Linux Enterprise 16 boot loader for x86 systems is called GRUB2.
Options it can pass to the kernel include single-user mode, which
provides root access without any authentication, and the ability to
disable SELinux. To prevent local users from modifying the boot
parameters and endangering security, protect the boot loader configuration
with a password and ensure its configuration file's permissions
are set properly. |
Rule
Ensure SMEP is not disabled during boot
[ref] | The SMEP is used to prevent the supervisor mode from executing user space code,
it is enabled by default since Linux kernel 3.0. But it could be disabled through
kernel boot parameters.
Ensure that Supervisor Mode Execution Prevention (SMEP) is not disabled by
the nosmep boot parameter option.
Check that the line GRUB_CMDLINE_LINUX="..." within /etc/default/grub
doesn't contain the argument nosmep.
Run the following command to update command line for already installed kernels:
# grubby --update-kernel=ALL --remove-args="nosmep"
| | Rationale: | Disabling SMEP can facilitate exploitation of certain vulnerabilities because it allows
the kernel to unintentionally execute code in less privileged memory space. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_grub2_nosmep_argument_absent | | Identifiers: | CCE-95717-5 | | References: | | |
|
Rule
Enforce Spectre v2 mitigation
[ref] | Spectre V2 is an indirect branch poisoning attack that can lead to data leakage.
An exploit for Spectre V2 tricks the indirect branch predictor into executing
code from a future indirect branch chosen by the attacker, even if the privilege
level is different.
Since Linux Kernel 4.15 you can check the Spectre V2 mitigation state with the following command:
cat /sys/devices/system/cpu/vulnerabilities/spectre_v2
Enforce the Spectre V2 mitigation by adding the argument
spectre_v2=on to the default
GRUB 2 command line for the Linux operating system.
Configure the default Grub2 kernel command line to contain spectre_v2=on as follows:
# grub2-editenv - set "$(grub2-editenv - list | grep kernelopts) spectre_v2=on"
| | Rationale: | The Spectre V2 vulnerability allows an attacker to read memory that he should not have
access to. | | Severity: | high | | Rule ID: | xccdf_org.ssgproject.content_rule_grub2_spectre_v2_argument | | Identifiers: | CCE-95707-6 | | References: | | |
|
| Group
Configure Syslog
Group contains 1 group and 1 rule |
[ref]
The syslog service has been the default Unix logging mechanism for
many years. It has a number of downsides, including inconsistent log format,
lack of authentication for received messages, and lack of authentication,
encryption, or reliable transport for messages sent over a network. However,
due to its long history, syslog is a de facto standard which is supported by
almost all Unix applications.
In SUSE Linux Enterprise 16, rsyslog has replaced ksyslogd as the
syslog daemon of choice, and it includes some additional security features
such as reliable, connection-oriented (i.e. TCP) transmission of logs, the
option to log to database formats, and the encryption of log data en route to
a central logging server.
This section discusses how to configure rsyslog for
best effect, and how to use tools provided with the system to maintain and
monitor logs. |
| Group
Rsyslog Logs Sent To Remote Host
Group contains 1 rule |
[ref]
If system logs are to be useful in detecting malicious
activities, it is necessary to send logs to a remote server. An
intruder who has compromised the root account on a system may
delete the log entries which indicate that the system was attacked
before they are seen by an administrator.
However, it is recommended that logs be stored on the local
host in addition to being sent to the loghost, especially if
rsyslog has been configured to use the UDP protocol to send
messages over a network. UDP does not guarantee reliable delivery,
and moderately busy sites will lose log messages occasionally,
especially in periods of high traffic which may be the result of an
attack. In addition, remote rsyslog messages are not
authenticated in any way by default, so it is easy for an attacker to
introduce spurious messages to the central log server. Also, some
problems cause loss of network connectivity, which will prevent the
sending of messages to the central server. For all of these reasons, it is
better to store log messages both centrally and on each host, so
that they can be correlated if necessary. |
Rule
Ensure Logs Sent To Remote Host
[ref] | To configure rsyslog to send logs to a remote log server,
open /etc/rsyslog.conf and read and understand the last section of the file,
which describes the multiple directives necessary to activate remote
logging.
Along with these other directives, the system can be configured
to forward its logs to a particular log server by
adding or correcting one of the following lines,
substituting logcollector appropriately.
The choice of protocol depends on the environment of the system;
although TCP and RELP provide more reliable message delivery,
they may not be supported in all environments.
To use UDP for log message delivery:
*.* @logcollector
Or in RainerScript:
*.* action(type="omfwd" ... target="logcollector" protocol="udp")
To use TCP for log message delivery:
*.* @@logcollector
Or in RainerScript:
*.* action(type="omfwd" ... target="logcollector" protocol="tcp")
To use RELP for log message delivery:
*.* :omrelp:logcollector
Or in RainerScript:
*.* action(type="omfwd" ... target="logcollector" protocol="relp")
There must be a resolvable DNS CNAME or Alias record set to " logcollector" for logs to be sent correctly to the centralized logging utility. Warning:
It is important to configure queues in case the client is sending log
messages to a remote server. If queues are not configured,
the system will stop functioning when the connection
to the remote server is not available. Please consult Rsyslog
documentation for more information about configuration of queues. The
example configuration which should go into /etc/rsyslog.conf
can look like the following lines:
$ActionQueueType LinkedList
$ActionQueueFileName queuefilename
$ActionQueueMaxDiskSpace 1g
$ActionQueueSaveOnShutdown on
$ActionResumeRetryCount -1
Or if using Rainer Script syntax, it could be:
*.* action(type="omfwd" queue.type="linkedlist" queue.filename="example_fwd" action.resumeRetryCount="-1" queue.saveOnShutdown="on" target="example.com" port="30514" protocol="tcp")
| | Rationale: | A log server (loghost) receives syslog messages from one or more
systems. This data can be used as an additional log source in the event a
system is compromised and its local logs are suspect. Forwarding log messages
to a remote loghost also provides system administrators with a centralized
place to view the status of multiple hosts within the enterprise. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_rsyslog_remote_loghost | | Identifiers: | CCE-95714-2 | | References: | | cis-csc | 1, 13, 14, 15, 16, 2, 3, 5, 6 | | cobit5 | APO11.04, APO13.01, BAI03.05, BAI04.04, DSS05.04, DSS05.07, MEA02.01 | | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(5)(ii)(B), 164.308(a)(5)(ii)(C), 164.308(a)(6)(ii), 164.308(a)(8), 164.310(d)(2)(iii), 164.312(b), 164.314(a)(2)(i)(C), 164.314(a)(2)(iii) | | isa-62443-2009 | 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4 | | isa-62443-2013 | SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 7.1, SR 7.2 | | iso27001-2013 | A.12.1.3, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.17.2.1 | | nerc-cip | CIP-003-8 R5.2, CIP-004-6 R3.3 | | nist | CM-6(a), AU-4(1), AU-9(2) | | nist-csf | PR.DS-4, PR.PT-1 | | os-srg | SRG-OS-000479-GPOS-00224, SRG-OS-000480-GPOS-00227, SRG-OS-000342-GPOS-00133 | | anssi | R71 | | ism | 0988, 1405 | | suse-base-sle16 | SLES-16-16016510 |
| |
|
| Group
File Permissions and Masks
Group contains 3 groups and 4 rules |
[ref]
Traditional Unix security relies heavily on file and
directory permissions to prevent unauthorized users from reading or
modifying files to which they should not have access.
Several of the commands in this section search filesystems
for files or directories with certain characteristics, and are
intended to be run on every local partition on a given system.
When the variable PART appears in one of the commands below,
it means that the command is intended to be run repeatedly, with the
name of each local partition substituted for PART in turn.
The following command prints a list of all xfs partitions on the local
system, which is the default filesystem for SUSE Linux Enterprise 16
installations:
$ mount -t xfs | awk '{print $3}'
For any systems that use a different
local filesystem type, modify this command as appropriate. |
| Group
Verify Permissions on Important Files and
Directories
Group contains 2 rules |
[ref]
Permissions for many files on a system must be set
restrictively to ensure sensitive information is properly protected.
This section discusses important
permission restrictions which can be verified
to ensure that no harmful discrepancies have
arisen. |
Rule
Ensure All Files Are Owned by a Group
[ref] | If any file is not group-owned by a valid defined group, the cause of the lack of
group-ownership must be investigated. Following this, those files should be deleted or
assigned to an appropriate group. The groups need to be defined in /etc/group
or in /usr/lib/group if nss-altfiles are configured to be used
in /etc/nsswitch.conf.
Locate the mount points related to local devices by the following command:
$ findmnt -n -l -k -it $(awk '/nodev/ { print $2 }' /proc/filesystems | paste -sd,)
For all mount points listed by the previous command, it is necessary to search for files which
do not belong to a valid group using the following command:
$ sudo find MOUNTPOINT -xdev -nogroup 2>/dev/null
Warning:
This rule only considers local groups as valid groups.
If you have your groups defined outside /etc/group or /usr/lib/group, the rule won't consider those. Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111. | | Rationale: | Unowned files do not directly imply a security problem, but they are generally a sign that
something is amiss. They may be caused by an intruder, by incorrect software installation or
draft software removal, or by failure to remove all files belonging to a deleted account, or
other similar cases. The files should be repaired so they will not cause problems when
accounts are created in the future, and the cause should be discovered and addressed. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_ungroupowned | | Identifiers: | CCE-95705-0 | | References: | | cis-csc | 1, 11, 12, 13, 14, 15, 16, 18, 3, 5 | | cobit5 | APO01.06, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.02, DSS06.03, DSS06.06, DSS06.10 | | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4 | | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 5.2 | | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.18.1.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5 | | nist | CM-6(a), AC-6(1) | | nist-csf | PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.DS-5, PR.PT-3 | | os-srg | SRG-OS-000480-GPOS-00227 | | anssi | R53 | | pcidss4 | 2.2.6, 2.2 | | suse-base-sle16 | SLES-16-16016100 |
| |
|
Rule
Ensure All Files Are Owned by a User
[ref] | If any files are not owned by a user, then the cause of their lack of ownership should be
investigated. Following this, the files should be deleted or assigned to an appropriate user.
Locate the mount points related to local devices by the following command:
$ findmnt -n -l -k -it $(awk '/nodev/ { print $2 }' /proc/filesystems | paste -sd,)
For all mount points listed by the previous command, it is necessary to search for files which
do not belong to a valid user using the following command:
$ sudo find MOUNTPOINT -xdev -nouser 2>/dev/null
Warning:
For this rule to evaluate centralized user accounts, getent must be working properly
so that running the command getent passwd returns a list of all users in your organization.
If using the System Security Services Daemon (SSSD), enumerate = true must be configured
in your organization's domain to return a complete list of users Warning:
This rule can take a long time to perform the check and might consume a considerable
amount of resources depending on the number of files present on the system. It is not a
problem in most cases, but especially systems with a large number of files can be affected.
See https://access.redhat.com/articles/6999111. | | Rationale: | Unowned files do not directly imply a security problem, but they are generally a sign that
something is amiss. They may be caused by an intruder, by incorrect software installation or
draft software removal, or by failure to remove all files belonging to a deleted account, or
other similar cases. The files should be repaired so they will not cause problems when
accounts are created in the future, and the cause should be discovered and addressed. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_no_files_unowned_by_user | | Identifiers: | CCE-95710-0 | | References: | | cis-csc | 11, 12, 13, 14, 15, 16, 18, 3, 5, 9 | | cobit5 | APO01.06, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06 | | isa-62443-2009 | 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3 | | isa-62443-2013 | SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 5.2, SR 7.6 | | iso27001-2013 | A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5 | | nist | CM-6(a), AC-6(1) | | nist-csf | PR.AC-4, PR.AC-6, PR.DS-5, PR.IP-1, PR.PT-3 | | os-srg | SRG-OS-000480-GPOS-00227 | | anssi | R53 | | pcidss4 | 2.2.6, 2.2 | | suse-base-sle16 | SLES-16-16016105 |
| |
|
| Group
Restrict Programs from Dangerous Execution Patterns
Group contains 1 group and 2 rules |
[ref]
The recommendations in this section are designed to
ensure that the system's features to protect against potentially
dangerous program execution are activated.
These protections are applied at the system initialization or
kernel level, and defend against certain types of badly-configured
or compromised programs. |
| Group
Enable Execute Disable (XD) or No Execute (NX) Support on
x86 Systems
Group contains 2 rules |
[ref]
Recent processors in the x86 family support the
ability to prevent code execution on a per memory page basis.
Generically and on AMD processors, this ability is called No
Execute (NX), while on Intel processors it is called Execute
Disable (XD). This ability can help prevent exploitation of buffer
overflow vulnerabilities and should be activated whenever possible.
Extra steps must be taken to ensure that this protection is
enabled, particularly on 32-bit x86 systems. Other processors, such
as Itanium and POWER, have included such support since inception
and the standard kernel for those platforms supports the
feature. This is enabled by default on the latest Oracle Linux, Red Hat and
Fedora systems if supported by the hardware. |
Rule
Enable NX or XD Support in the BIOS
[ref] | Reboot the system and enter the BIOS or Setup configuration menu.
Navigate the BIOS configuration menu and make sure that the option is enabled. The setting may be located
under a Security section. Look for Execute Disable (XD) on Intel-based systems and No Execute (NX)
on AMD-based systems. | | Rationale: | Computers with the ability to prevent this type of code execution frequently put an option in the BIOS that will
allow users to turn the feature on or off at will. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_bios_enable_execution_restrictions | | Identifiers: | CCE-95703-5 | | References: | | cis-csc | 11, 3, 9 | | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05 | | cui | 3.1.7 | | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3 | | isa-62443-2013 | SR 7.6 | | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4 | | nist | SC-39, CM-6(a) | | nist-csf | PR.IP-1 | | os-srg | SRG-OS-000433-GPOS-00192 | | app-srg-ctr | SRG-APP-000450-CTR-001105 | | pcidss4 | 2.2.1, 2.2 | | suse-base-sle16 | SLES-16-16016400 |
| |
|
Rule
Install PAE Kernel on Supported 32-bit x86 Systems
[ref] | Systems that are using the 64-bit x86 kernel package
do not need to install the kernel-PAE package because the 64-bit
x86 kernel already includes this support. However, if the system is
32-bit and also supports the PAE and NX features as
determined in the previous section, the kernel-PAE package should
be installed to enable XD or NX support.
The kernel-PAE package can be installed with the following command:
$ sudo zypper install kernel-PAE
The installation process should also have configured the
bootloader to load the new kernel at boot. Verify this after reboot
and modify /etc/default/grub if necessary. Warning:
The kernel-PAE package should not be
installed on older systems that do not support the XD or NX bit, as
8this may prevent them from booting.8 | | Rationale: | On 32-bit systems that support the XD or NX bit, the vendor-supplied
PAE kernel is required to enable either Execute Disable (XD) or No Execute (NX) support. | | Severity: | unknown | | Rule ID: | xccdf_org.ssgproject.content_rule_install_PAE_kernel_on_x86-32 | | Identifiers: | CCE-95708-4 | | References: | | cis-csc | 11, 3, 9 | | cobit5 | BAI10.01, BAI10.02, BAI10.03, BAI10.05 | | cui | 3.1.7 | | isa-62443-2009 | 4.3.4.3.2, 4.3.4.3.3 | | isa-62443-2013 | SR 7.6 | | iso27001-2013 | A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4 | | nist | CM-6(a) | | nist-csf | PR.IP-1 | | anssi | R1 | | pcidss4 | 2.2.1, 2.2 | | suse-base-sle16 | SLES-16-16016400 |
| |
|
| Group
SELinux
Group contains 1 group and 2 rules |
[ref]
SELinux is a feature of the Linux kernel which can be
used to guard against misconfigured or compromised programs.
SELinux enforces the idea that programs should be limited in what
files they can access and what actions they can take.
The default SELinux policy, as configured on SUSE Linux Enterprise 16, has been
sufficiently developed and debugged that it should be usable on
almost any system with minimal configuration and a small
amount of system administrator training. This policy prevents
system services - including most of the common network-visible
services such as mail servers, FTP servers, and DNS servers - from
accessing files which those services have no valid reason to
access. This action alone prevents a huge amount of possible damage
from network attacks against services, from trojaned software, and
so forth.
This guide recommends that SELinux be enabled using the
default (targeted) policy on every SUSE Linux Enterprise 16 system, unless that
system has unusual requirements which make a stronger policy
appropriate. |
| Group
SELinux - Booleans
Group contains 1 rule |
[ref]
Enable or Disable runtime customization of SELinux system policies
without having to reload or recompile the SELinux policy. |
Rule
Enable the selinuxuser_execmod SELinux Boolean
[ref] | By default, the SELinux boolean selinuxuser_execmod is enabled.
If this setting is disabled, it should be enabled.
To enable the selinuxuser_execmod SELinux boolean, run the following command:
$ sudo setsebool -P selinuxuser_execmod on
| | Rationale: | | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_sebool_selinuxuser_execmod | | Identifiers: | CCE-95715-9 | | References: | | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e) | | suse-base-sle16 | SLES-16-16016500 |
| |
|
Rule
Install libselinux Package
[ref] | The libselinux package can be installed with the following command:
$ sudo zypper install libselinux
| | Rationale: | Security-enhanced Linux is a feature of the Linux kernel and a number of utilities
with enhanced security functionality designed to add mandatory access controls to Linux.
The libselinux package contains the core library of the Security-enhanced Linux system. | | Severity: | high | | Rule ID: | xccdf_org.ssgproject.content_rule_package_libselinux_installed | | Identifiers: | CCE-95712-6 | | References: | | |
|
| Group
System Accounting with auditd
Group contains 4 groups and 7 rules |
[ref]
The audit service provides substantial capabilities
for recording system activities. By default, the service audits about
SELinux AVC denials and certain types of security-relevant events
such as system logins, account modifications, and authentication
events performed by programs such as sudo.
Under its default configuration, auditd has modest disk space
requirements, and should not noticeably impact system performance.
NOTE: The Linux Audit daemon auditd can be configured to use
the augenrules program to read audit rules files ( *.rules)
located in /etc/audit/rules.d location and compile them to create
the resulting form of the /etc/audit/audit.rules configuration file
during the daemon startup (default configuration). Alternatively, the auditd
daemon can use the auditctl utility to read audit rules from the
/etc/audit/audit.rules configuration file during daemon startup,
and load them into the kernel. The expected behavior is configured via the
appropriate ExecStartPost directive setting in the
/usr/lib/systemd/system/auditd.service configuration file.
To instruct the auditd daemon to use the augenrules program
to read audit rules (default configuration), use the following setting:
ExecStartPost=-/sbin/augenrules --load
in the /usr/lib/systemd/system/auditd.service configuration file.
In order to instruct the auditd daemon to use the auditctl
utility to read audit rules, use the following setting:
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules
in the /usr/lib/systemd/system/auditd.service configuration file.
Refer to [Service] section of the /usr/lib/systemd/system/auditd.service
configuration file for further details.
Government networks often have substantial auditing
requirements and auditd can be configured to meet these
requirements.
Examining some example audit records demonstrates how the Linux audit system
satisfies common requirements.
The following example from Red Hat Enterprise Linux 7 Documentation available at
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/selinux_users_and_administrators_guide/index#sect-Security-Enhanced_Linux-Fixing_Problems-Raw_Audit_Messages
shows the substantial amount of information captured in a
two typical "raw" audit messages, followed by a breakdown of the most important
fields. In this example the message is SELinux-related and reports an AVC
denial (and the associated system call) that occurred when the Apache HTTP
Server attempted to access the /var/www/html/file1 file (labeled with
the samba_share_t type):
type=AVC msg=audit(1226874073.147:96): avc: denied { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file
type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
msg=audit(1226874073.147:96)- The number in parentheses is the unformatted time stamp (Epoch time)
for the event, which can be converted to standard time by using the
date command.
{ getattr }- The item in braces indicates the permission that was denied.
getattr
indicates the source process was trying to read the target file's status information.
This occurs before reading files. This action is denied due to the file being
accessed having the wrong label. Commonly seen permissions include getattr,
read, and write.
comm="httpd"- The executable that launched the process. The full path of the executable is
found in the
exe= section of the system call (SYSCALL) message,
which in this case, is exe="/usr/sbin/httpd".
path="/var/www/html/file1"- The path to the object (target) the process attempted to access.
scontext="unconfined_u:system_r:httpd_t:s0"- The SELinux context of the process that attempted the denied action. In
this case, it is the SELinux context of the Apache HTTP Server, which is running
in the
httpd_t domain.
tcontext="unconfined_u:object_r:samba_share_t:s0"- The SELinux context of the object (target) the process attempted to access.
In this case, it is the SELinux context of
file1. Note: the samba_share_t
type is not accessible to processes running in the httpd_t domain.
- From the system call (
SYSCALL) message, two items are of interest:
success=no: indicates whether the denial (AVC) was enforced or not.
success=no indicates the system call was not successful (SELinux denied
access). success=yes indicates the system call was successful - this can
be seen for permissive domains or unconfined domains, such as initrc_t
and kernel_t.
exe="/usr/sbin/httpd": the full path to the executable that launched
the process, which in this case, is exe="/usr/sbin/httpd".
|
| Group
Configure auditd Rules for Comprehensive Auditing
Group contains 2 groups and 4 rules |
[ref]
The auditd program can perform comprehensive
monitoring of system activity. This section describes recommended
configuration settings for comprehensive auditing, but a full
description of the auditing system's capabilities is beyond the
scope of this guide. The mailing list linux-audit@redhat.com exists
to facilitate community discussion of the auditing system.
The audit subsystem supports extensive collection of events, including:
- Tracing of arbitrary system calls (identified by name or number)
on entry or exit.
- Filtering by PID, UID, call success, system call argument (with
some limitations), etc.
- Monitoring of specific files for modifications to the file's
contents or metadata.
Auditing rules at startup are controlled by the file /etc/audit/audit.rules.
Add rules to it to meet the auditing requirements for your organization.
Each line in /etc/audit/audit.rules represents a series of arguments
that can be passed to auditctl and can be individually tested
during runtime. See documentation in /usr/share/doc/audit-VERSION
and
in the related man pages for more details.
If copying any example audit rulesets from /usr/share/doc/audit-VERSION,
be sure to comment out the
lines containing arch= which are not appropriate for your system's
architecture. Then review and understand the following rules,
ensuring rules are activated as needed for the appropriate
architecture.
After reviewing all the rules, reading the following sections, and
editing as needed, the new rules can be activated as follows:
$ sudo service auditd restart
|
| Group
Record Events that Modify the System's Discretionary Access Controls
Group contains 1 rule |
[ref]
At a minimum, the audit system should collect file permission
changes for all users and root. Note that the "-F arch=b32" lines should be
present even on a 64 bit system. These commands identify system calls for
auditing. Even if the system is 64 bit it can still execute 32 bit system
calls. Additionally, these rules can be configured in a number of ways while
still achieving the desired effect. An example of this is that the "-S" calls
could be split up and placed on separate lines, however, this is less efficient.
Add the following to /etc/audit/audit.rules:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If your system is 64 bit then these lines should be duplicated and the
arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
|
Rule
Record Events that Modify the System's Discretionary Access Controls - fchmodat2
[ref] | At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchmodat2 -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat2 -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmodat2 -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat2 -F auid>=1000 -F auid!=unset -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient. | | Rationale: | The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_fchmodat2 | | References: | | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203 | | app-srg-ctr | SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255 | | anssi | R73 | | pcidss4 | 10.3.4, 10.3 | | suse-base-sle16 | SLES-16-16016540 |
| Remediation Shell script ⇲# Remediation is applicable only in certain platforms
if rpm --quiet -q audit && rpm --quiet -q kernel-default || rpm --quiet -q kernel-default-base; then
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
OTHER_FILTERS=""
AUID_FILTERS="-F auid>=1000 -F auid!=unset"
SYSCALL="fchmodat2"
KEY="perm_mod"
SYSCALL_GROUPING="chmod fchmod fchmodat fchmodat2"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
default_file="/etc/audit/rules.d/$KEY.rules"
# As other_filters may include paths, lets use a different delimiter for it
# The "F" script expression tells sed to print the filenames where the expressions matched
readarray -t files_to_inspect < <(sed -s -n -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" -e "F" /etc/audit/rules.d/*.rules)
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
file_to_inspect="/etc/audit/rules.d/$KEY.rules"
files_to_inspect=("$file_to_inspect")
if [ ! -e "$file_to_inspect" ]
then
touch "$file_to_inspect"
chmod 0600 "$file_to_inspect"
fi
fi
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod 0600 ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
default_file="/etc/audit/audit.rules"
files_to_inspect+=('/etc/audit/audit.rules' )
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod 0600 ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
done
else
>&2 echo 'Remediation is not applicable, nothing was done'
fi
Remediation Ansible snippet ⇲| Complexity: | low |
|---|
| Disruption: | low |
|---|
| Reboot: | true |
|---|
| Strategy: | restrict |
|---|
- name: Gather the package facts
package_facts:
manager: auto
tags:
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_fchmodat2
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Set architecture for audit fchmodat2 tasks
ansible.builtin.set_fact:
audit_arch: b64
when:
- '"audit" in ansible_facts.packages'
- ("kernel-default" in ansible_facts.packages or "kernel-default-base" in ansible_facts.packages)
- ansible_architecture == "aarch64" or ansible_architecture == "ppc64" or ansible_architecture
== "ppc64le" or ansible_architecture == "s390x" or ansible_architecture == "x86_64"
tags:
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_fchmodat2
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for fchmodat2 for 32bit platform
block:
- name: Declare list of syscalls
ansible.builtin.set_fact:
syscalls:
- fchmodat2
syscall_grouping:
- chmod
- fchmod
- fchmodat
- fchmodat2
- name: Check existence of fchmodat2 in /etc/audit/rules.d/
ansible.builtin.find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
ansible.builtin.set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
ansible.builtin.set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
ansible.builtin.set_fact: found_paths="{{ find_command.results | map(attribute='files')
| flatten | map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
ansible.builtin.set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
ansible.builtin.set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/perm_mod.rules
ansible.builtin.set_fact: audit_file="/etc/audit/rules.d/perm_mod.rules"
when: found_paths | length == 0
- name: Declare found syscalls
ansible.builtin.set_fact: syscalls_found="{{ find_command.results | selectattr('matched')
| map(attribute='item') | list }}"
- name: Declare missing syscalls
ansible.builtin.set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found)
}}"
- name: Replace the audit rule in {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
mode: g-rwx,o-rwx
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
ansible.builtin.set_fact:
syscalls:
- fchmodat2
syscall_grouping:
- chmod
- fchmod
- fchmodat
- fchmodat2
- name: Check existence of fchmodat2 in /etc/audit/audit.rules
ansible.builtin.find:
paths: /etc/audit
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
ansible.builtin.set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
ansible.builtin.set_fact: syscalls_found="{{ find_command.results | selectattr('matched')
| map(attribute='item') | list }}"
- name: Declare missing syscalls
ansible.builtin.set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found)
}}"
- name: Replace the audit rule in {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
mode: g-rwx,o-rwx
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel-default" in ansible_facts.packages or "kernel-default-base" in ansible_facts.packages)
tags:
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_fchmodat2
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for fchmodat2 for 64bit platform
block:
- name: Declare list of syscalls
ansible.builtin.set_fact:
syscalls:
- fchmodat2
syscall_grouping:
- chmod
- fchmod
- fchmodat
- fchmodat2
- name: Check existence of fchmodat2 in /etc/audit/rules.d/
ansible.builtin.find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
ansible.builtin.set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
ansible.builtin.set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
ansible.builtin.set_fact: found_paths="{{ find_command.results | map(attribute='files')
| flatten | map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
ansible.builtin.set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
ansible.builtin.set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/perm_mod.rules
ansible.builtin.set_fact: audit_file="/etc/audit/rules.d/perm_mod.rules"
when: found_paths | length == 0
- name: Declare found syscalls
ansible.builtin.set_fact: syscalls_found="{{ find_command.results | selectattr('matched')
| map(attribute='item') | list }}"
- name: Declare missing syscalls
ansible.builtin.set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found)
}}"
- name: Replace the audit rule in {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
mode: g-rwx,o-rwx
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
ansible.builtin.set_fact:
syscalls:
- fchmodat2
syscall_grouping:
- chmod
- fchmod
- fchmodat
- fchmodat2
- name: Check existence of fchmodat2 in /etc/audit/audit.rules
ansible.builtin.find:
paths: /etc/audit
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
ansible.builtin.set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
ansible.builtin.set_fact: syscalls_found="{{ find_command.results | selectattr('matched')
| map(attribute='item') | list }}"
- name: Declare missing syscalls
ansible.builtin.set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found)
}}"
- name: Replace the audit rule in {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
mode: g-rwx,o-rwx
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=perm_mod
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel-default" in ansible_facts.packages or "kernel-default-base" in ansible_facts.packages)
- audit_arch == "b64"
tags:
- PCI-DSSv4-10.3
- PCI-DSSv4-10.3.4
- audit_rules_dac_modification_fchmodat2
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
|
|
| Group
Record File Deletion Events by User
Group contains 1 rule |
[ref]
At a minimum, the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d, setting ARCH to either b32 for 32-bit
system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat,renameat2 -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file, setting ARCH to either b32 for 32-bit
system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat,renameat2 -F auid>=1000 -F auid!=unset -F key=delete
|
Rule
Ensure auditd Collects File Deletion Events by User - renameat2
[ref] | At a minimum, the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d, setting ARCH to either b32 for 32-bit
system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S renameat2 -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file, setting ARCH to either b32 for 32-bit
system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S renameat2 -F auid>=1000 -F auid!=unset -F key=delete
| | Rationale: | Auditing file deletions will create an audit trail for files that are removed
from the system. The audit trail could aid in system troubleshooting, as well as, detecting
malicious processes that attempt to delete log files to conceal their presence. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_file_deletion_events_renameat2 | | References: | | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000466-GPOS-00210, SRG-OS-000467-GPOS-00211, SRG-OS-000468-GPOS-00212 | | app-srg-ctr | SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270 | | anssi | R73 | | pcidss4 | 10.2.1.7, 10.2.1, 10.2 | | suse-base-sle16 | SLES-16-16016525 |
| Remediation Shell script ⇲# Remediation is applicable only in certain platforms
if rpm --quiet -q audit && rpm --quiet -q kernel-default || rpm --quiet -q kernel-default-base; then
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
ACTION_ARCH_FILTERS="-a always,exit -F arch=$ARCH"
OTHER_FILTERS=""
AUID_FILTERS="-F auid>=1000 -F auid!=unset"
SYSCALL="renameat2"
KEY="delete"
SYSCALL_GROUPING="unlink unlinkat rename renameat renameat2 rmdir"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
default_file="/etc/audit/rules.d/$KEY.rules"
# As other_filters may include paths, lets use a different delimiter for it
# The "F" script expression tells sed to print the filenames where the expressions matched
readarray -t files_to_inspect < <(sed -s -n -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" -e "F" /etc/audit/rules.d/*.rules)
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
file_to_inspect="/etc/audit/rules.d/$KEY.rules"
files_to_inspect=("$file_to_inspect")
if [ ! -e "$file_to_inspect" ]
then
touch "$file_to_inspect"
chmod 0600 "$file_to_inspect"
fi
fi
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod 0600 ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
unset syscall_a
unset syscall_grouping
unset syscall_string
unset syscall
unset file_to_edit
unset rule_to_edit
unset rule_syscalls_to_edit
unset other_string
unset auid_string
unset full_rule
# Load macro arguments into arrays
read -a syscall_a <<< $SYSCALL
read -a syscall_grouping <<< $SYSCALL_GROUPING
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
files_to_inspect=()
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
default_file="/etc/audit/audit.rules"
files_to_inspect+=('/etc/audit/audit.rules' )
# After converting to jinja, we cannot return; therefore we skip the rest of the macro if needed instead
skip=1
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that satisfy the rule pattern,
# i.e, collect rules that match:
# * the action, list and arch, (2-nd argument)
# * the other filters, (3-rd argument)
# * the auid filters, (4-rd argument)
readarray -t similar_rules < <(sed -e "/^$ACTION_ARCH_FILTERS/!d" -e "\#$OTHER_FILTERS#!d" -e "/$AUID_FILTERS/!d" "$audit_file")
candidate_rules=()
# Filter out rules that have more fields then required. This will remove rules more specific than the required scope
for s_rule in "${similar_rules[@]}"
do
# Strip all the options and fields we know of,
# than check if there was any field left over
extra_fields=$(sed -E -e "s/^$ACTION_ARCH_FILTERS//" -e "s#$OTHER_FILTERS##" -e "s/$AUID_FILTERS//" -e "s/((:?-S [[:alnum:],]+)+)//g" -e "s/-F key=\w+|-k \w+//"<<< "$s_rule")
grep -q -- "-F" <<< "$extra_fields" || candidate_rules+=("$s_rule")
done
if [[ ${#syscall_a[@]} -ge 1 ]]
then
# Check if the syscall we want is present in any of the similar existing rules
for rule in "${candidate_rules[@]}"
do
rule_syscalls=$(echo "$rule" | grep -o -P '(-S [\w,]+)+' | xargs)
all_syscalls_found=0
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "$rule_syscalls" || {
# A syscall was not found in the candidate rule
all_syscalls_found=1
}
done
if [[ $all_syscalls_found -eq 0 ]]
then
# We found a rule with all the syscall(s) we want; skip rest of macro
skip=0
break
fi
# Check if this rule can be grouped with our target syscall and keep track of it
for syscall_g in "${syscall_grouping[@]}"
do
if grep -q -- "\b${syscall_g}\b" <<< "$rule_syscalls"
then
file_to_edit=${audit_file}
rule_to_edit=${rule}
rule_syscalls_to_edit=${rule_syscalls}
fi
done
done
else
# If there is any candidate rule, it is compliant; skip rest of macro
if [ "${#candidate_rules[@]}" -gt 0 ]
then
skip=0
fi
fi
if [ "$skip" -eq 0 ]; then
break
fi
done
if [ "$skip" -ne 0 ]; then
# We checked all rules that matched the expected resemblance pattern (action, arch & auid)
# At this point we know if we need to either append the $full_rule or group
# the syscall together with an exsiting rule
# Append the full_rule if it cannot be grouped to any other rule
if [ -z ${rule_to_edit+x} ]
then
# Build full_rule while avoid adding double spaces when other_filters is empty
if [ "${#syscall_a[@]}" -gt 0 ]
then
syscall_string=""
for syscall in "${syscall_a[@]}"
do
syscall_string+=" -S $syscall"
done
fi
other_string=$([[ $OTHER_FILTERS ]] && echo " $OTHER_FILTERS") || /bin/true
auid_string=$([[ $AUID_FILTERS ]] && echo " $AUID_FILTERS") || /bin/true
full_rule="$ACTION_ARCH_FILTERS${syscall_string}${other_string}${auid_string} -F key=$KEY" || /bin/true
echo "$full_rule" >> "$default_file"
chmod 0600 ${default_file}
else
# Check if the syscalls are declared as a comma separated list or
# as multiple -S parameters
if grep -q -- "," <<< "${rule_syscalls_to_edit}"
then
delimiter=","
else
delimiter=" -S "
fi
new_grouped_syscalls="${rule_syscalls_to_edit}"
for syscall in "${syscall_a[@]}"
do
grep -q -- "\b${syscall}\b" <<< "${rule_syscalls_to_edit}" || {
# A syscall was not found in the candidate rule
new_grouped_syscalls+="${delimiter}${syscall}"
}
done
# Group the syscall in the rule
sed -i -e "\#${rule_to_edit}#s#${rule_syscalls_to_edit}#${new_grouped_syscalls}#" "$file_to_edit"
fi
fi
done
else
>&2 echo 'Remediation is not applicable, nothing was done'
fi
Remediation Ansible snippet ⇲| Complexity: | low |
|---|
| Disruption: | low |
|---|
| Reboot: | true |
|---|
| Strategy: | restrict |
|---|
- name: Gather the package facts
package_facts:
manager: auto
tags:
- PCI-DSSv4-10.2
- PCI-DSSv4-10.2.1
- PCI-DSSv4-10.2.1.7
- audit_rules_file_deletion_events_renameat2
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Set architecture for audit renameat2 tasks
ansible.builtin.set_fact:
audit_arch: b64
when:
- '"audit" in ansible_facts.packages'
- ("kernel-default" in ansible_facts.packages or "kernel-default-base" in ansible_facts.packages)
- ansible_architecture == "aarch64" or ansible_architecture == "ppc64" or ansible_architecture
== "ppc64le" or ansible_architecture == "s390x" or ansible_architecture == "x86_64"
tags:
- PCI-DSSv4-10.2
- PCI-DSSv4-10.2.1
- PCI-DSSv4-10.2.1.7
- audit_rules_file_deletion_events_renameat2
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for renameat2 for 32bit platform
block:
- name: Declare list of syscalls
ansible.builtin.set_fact:
syscalls:
- renameat2
syscall_grouping:
- unlink
- unlinkat
- rename
- renameat
- renameat2
- rmdir
- name: Check existence of renameat2 in /etc/audit/rules.d/
ansible.builtin.find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
ansible.builtin.set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
ansible.builtin.set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
ansible.builtin.set_fact: found_paths="{{ find_command.results | map(attribute='files')
| flatten | map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
ansible.builtin.set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
ansible.builtin.set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/delete.rules
ansible.builtin.set_fact: audit_file="/etc/audit/rules.d/delete.rules"
when: found_paths | length == 0
- name: Declare found syscalls
ansible.builtin.set_fact: syscalls_found="{{ find_command.results | selectattr('matched')
| map(attribute='item') | list }}"
- name: Declare missing syscalls
ansible.builtin.set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found)
}}"
- name: Replace the audit rule in {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
mode: g-rwx,o-rwx
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=delete
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
ansible.builtin.set_fact:
syscalls:
- renameat2
syscall_grouping:
- unlink
- unlinkat
- rename
- renameat
- renameat2
- rmdir
- name: Check existence of renameat2 in /etc/audit/audit.rules
ansible.builtin.find:
paths: /etc/audit
contains: -a always,exit -F arch=b32(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
ansible.builtin.set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
ansible.builtin.set_fact: syscalls_found="{{ find_command.results | selectattr('matched')
| map(attribute='item') | list }}"
- name: Declare missing syscalls
ansible.builtin.set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found)
}}"
- name: Replace the audit rule in {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b32)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
mode: g-rwx,o-rwx
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b32 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=delete
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel-default" in ansible_facts.packages or "kernel-default-base" in ansible_facts.packages)
tags:
- PCI-DSSv4-10.2
- PCI-DSSv4-10.2.1
- PCI-DSSv4-10.2.1.7
- audit_rules_file_deletion_events_renameat2
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
- name: Perform remediation of Audit rules for renameat2 for 64bit platform
block:
- name: Declare list of syscalls
ansible.builtin.set_fact:
syscalls:
- renameat2
syscall_grouping:
- unlink
- unlinkat
- rename
- renameat
- renameat2
- rmdir
- name: Check existence of renameat2 in /etc/audit/rules.d/
ansible.builtin.find:
paths: /etc/audit/rules.d
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: '*.rules'
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Reset syscalls found per file
ansible.builtin.set_fact:
syscalls_per_file: {}
found_paths_dict: {}
- name: Declare syscalls found per file
ansible.builtin.set_fact: syscalls_per_file="{{ syscalls_per_file | combine( {item.files[0].path
:[item.item] + syscalls_per_file.get(item.files[0].path, []) } ) }}"
loop: '{{ find_command.results | selectattr(''matched'') | list }}'
- name: Declare files where syscalls were found
ansible.builtin.set_fact: found_paths="{{ find_command.results | map(attribute='files')
| flatten | map(attribute='path') | list }}"
- name: Count occurrences of syscalls in paths
ansible.builtin.set_fact: found_paths_dict="{{ found_paths_dict | combine({ item:1+found_paths_dict.get(item,
0) }) }}"
loop: '{{ find_command.results | map(attribute=''files'') | flatten | map(attribute=''path'')
| list }}'
- name: Get path with most syscalls
ansible.builtin.set_fact: audit_file="{{ (found_paths_dict | dict2items() | sort(attribute='value')
| last).key }}"
when: found_paths | length >= 1
- name: No file with syscall found, set path to /etc/audit/rules.d/delete.rules
ansible.builtin.set_fact: audit_file="/etc/audit/rules.d/delete.rules"
when: found_paths | length == 0
- name: Declare found syscalls
ansible.builtin.set_fact: syscalls_found="{{ find_command.results | selectattr('matched')
| map(attribute='item') | list }}"
- name: Declare missing syscalls
ansible.builtin.set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found)
}}"
- name: Replace the audit rule in {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_per_file[audit_file]
| join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k
|-F key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
mode: g-rwx,o-rwx
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=delete
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
- name: Declare list of syscalls
ansible.builtin.set_fact:
syscalls:
- renameat2
syscall_grouping:
- unlink
- unlinkat
- rename
- renameat
- renameat2
- rmdir
- name: Check existence of renameat2 in /etc/audit/audit.rules
ansible.builtin.find:
paths: /etc/audit
contains: -a always,exit -F arch=b64(( -S |,)\w+)*(( -S |,){{ item }})+(( -S
|,)\w+)* -F auid>=1000 -F auid!=unset (-k\s+|-F\s+key=)\S+\s*$
patterns: audit.rules
register: find_command
loop: '{{ (syscall_grouping + syscalls) | unique }}'
- name: Set path to /etc/audit/audit.rules
ansible.builtin.set_fact: audit_file="/etc/audit/audit.rules"
- name: Declare found syscalls
ansible.builtin.set_fact: syscalls_found="{{ find_command.results | selectattr('matched')
| map(attribute='item') | list }}"
- name: Declare missing syscalls
ansible.builtin.set_fact: missing_syscalls="{{ syscalls | difference(syscalls_found)
}}"
- name: Replace the audit rule in {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
regexp: (-a always,exit -F arch=b64)(?=.*(?:(?:-S |,)(?:{{ syscalls_found |
join("|") }}))\b)((?:( -S |,)\w+)+)( -F auid>=1000 -F auid!=unset (?:-k |-F
key=)\w+)
line: \1\2\3{{ missing_syscalls | join("\3") }}\4
backrefs: true
state: present
mode: g-rwx,o-rwx
when: syscalls_found | length > 0 and missing_syscalls | length > 0
- name: Add the audit rule to {{ audit_file }}
ansible.builtin.lineinfile:
path: '{{ audit_file }}'
line: -a always,exit -F arch=b64 -S {{ syscalls | join(',') }} -F auid>=1000
-F auid!=unset -F key=delete
create: true
mode: g-rwx,o-rwx
state: present
when: syscalls_found | length == 0
when:
- '"audit" in ansible_facts.packages'
- ("kernel-default" in ansible_facts.packages or "kernel-default-base" in ansible_facts.packages)
- audit_arch == "b64"
tags:
- PCI-DSSv4-10.2
- PCI-DSSv4-10.2.1
- PCI-DSSv4-10.2.1.7
- audit_rules_file_deletion_events_renameat2
- low_complexity
- low_disruption
- medium_severity
- reboot_required
- restrict_strategy
|
|
Rule
Remove Default Configuration to Disable Syscall Auditing
[ref] | By default, SUSE Linux Enterprise 16 ships an audit rule to disable syscall
auditing for performance reasons.
To make sure that syscall auditing works, this line must be removed from
/etc/audit/rules.d/audit.rules and /etc/audit/audit.rules:
-a task,never
| | Rationale: | Audit rules for syscalls do not take effect unless this line is removed. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_enable_syscall_auditing | | References: | | |
|
Rule
Record Events that Modify the System's Mandatory Access Controls (/etc/selinux)
[ref] |
If the auditd daemon is configured to use the augenrules
program to read audit rules during daemon startup (the default), add the
following lines to a file with suffix .rules in the
directory /etc/audit/rules.d:
-w /etc/selinux/ -p wa -k MAC-policy
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules:
-w /etc/selinux/ -p wa -k MAC-policy
| | Rationale: | The system's mandatory access policy (SELinux) should not be
arbitrarily changed by anything other than administrator action. All changes to
MAC policy should be audited. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_audit_rules_mac_modification_etc_selinux | | References: | | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e) | | pcidss | Req-10.5.5 | | anssi | R73 | | pcidss4 | 10.3.4, 10.3 | | suse-base-sle16 | SLES-16-16016530 |
| |
|
| Group
Configure auditd Data Retention
Group contains 1 rule |
[ref]
The audit system writes data to /var/log/audit/audit.log. By default,
auditd rotates 5 logs by size (6MB), retaining a maximum of 30MB of
data in total, and refuses to write entries when the disk is too
full. This minimizes the risk of audit data filling its partition
and impacting other services. This also minimizes the risk of the audit
daemon temporarily disabling the system if it cannot write audit log (which
it can be configured to do).
For a busy
system or a system which is thoroughly auditing system activity, the default settings
for data retention may be
insufficient. The log file size needed will depend heavily on what types
of events are being audited. First configure auditing to log all the events of
interest. Then monitor the log size manually for awhile to determine what file
size will allow you to keep the required data for the correct time period.
Using a dedicated partition for /var/log/audit prevents the
auditd logs from disrupting system functionality if they fill, and,
more importantly, prevents other activity in /var from filling the
partition and stopping the audit trail. (The audit logs are size-limited and
therefore unlikely to grow without bound unless configured to do so.) Some
machines may have requirements that no actions occur which cannot be audited.
If this is the case, then auditd can be configured to halt the machine
if it runs out of space. Note: Since older logs are rotated,
configuring auditd this way does not prevent older logs from being
rotated away before they can be viewed.
If your system is configured to halt when logging cannot be performed, make
sure this can never happen under normal circumstances! Ensure that
/var/log/audit is on its own partition, and that this partition is
larger than the maximum amount of data auditd will retain
normally.
|
Rule
Set type of computer node name logging in audit logs
[ref] | To configure Audit daemon to use a unique identifier
as computer node name in the audit events,
set name_format to fqd
in /etc/audit/auditd.conf. Warning:
Whenever the variable var_auditd_name_format uses a multiple value option, for example
A|B|C , the first value will be used when remediating this rule. | | Rationale: | If option name_format is left at its default value of
none, audit events from different computers may be hard
to distinguish. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_auditd_name_format | | References: | | |
|
Rule
Enable auditd Service
[ref] | The auditd service is an essential userspace component of
the Linux Auditing System, as it is responsible for writing audit records to
disk.
The auditd service can be enabled with the following command:
$ sudo systemctl enable auditd.service
| | Rationale: | Without establishing what type of events occurred, it would be difficult
to establish, correlate, and investigate the events leading up to an outage or attack.
Ensuring the auditd service is active ensures audit records
generated by the kernel are appropriately recorded.
Additionally, a properly configured audit subsystem ensures that actions of
individual system users can be uniquely traced to those users so they
can be held accountable for their actions. | | Severity: | medium | | Rule ID: | xccdf_org.ssgproject.content_rule_service_auditd_enabled | | Identifiers: | CCE-95716-7 | | References: | | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9 | | cjis | 5.4.1.1 | | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | | cui | 3.3.1, 3.3.2, 3.3.6 | | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(5)(ii)(C), 164.310(a)(2)(iv), 164.310(d)(2)(iii), 164.312(b) | | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6 | | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | | nerc-cip | CIP-004-6 R3.3, CIP-007-3 R6.5 | | nist | AC-2(g), AU-3, AU-10, AU-2(d), AU-12(c), AU-14(1), AC-6(9), CM-6(a), SI-4(23) | | nist-csf | DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | | ospp | FAU_GEN.1 | | pcidss | Req-10.1 | | os-srg | SRG-OS-000062-GPOS-00031, SRG-OS-000037-GPOS-00015, SRG-OS-000038-GPOS-00016, SRG-OS-000039-GPOS-00017, SRG-OS-000040-GPOS-00018, SRG-OS-000041-GPOS-00019, SRG-OS-000042-GPOS-00021, SRG-OS-000051-GPOS-00024, SRG-OS-000054-GPOS-00025, SRG-OS-000122-GPOS-00063, SRG-OS-000254-GPOS-00095, SRG-OS-000255-GPOS-00096, SRG-OS-000337-GPOS-00129, SRG-OS-000348-GPOS-00136, SRG-OS-000349-GPOS-00137, SRG-OS-000350-GPOS-00138, SRG-OS-000351-GPOS-00139, SRG-OS-000352-GPOS-00140, SRG-OS-000353-GPOS-00141, SRG-OS-000354-GPOS-00142, SRG-OS-000358-GPOS-00145, SRG-OS-000365-GPOS-00152, SRG-OS-000392-GPOS-00172, SRG-OS-000475-GPOS-00220 | | app-srg-ctr | SRG-APP-000095-CTR-000170, SRG-APP-000409-CTR-000990, SRG-APP-000508-CTR-001300, SRG-APP-000510-CTR-001310 | | anssi | R33, R73 | | ism | 1409 | | pcidss4 | 10.2.1, 10.2 | | suse-base-sle16 | SLES-16-16016505 |
| |
|
Rule
Enable Auditing for Processes Which Start Prior to the Audit Daemon
[ref] | To ensure all processes can be audited, even those which start
prior to the audit daemon, add the argument audit=1 to the default
GRUB 2 command line for the Linux operating system.
Configure the default Grub2 kernel command line to contain audit=1 as follows:
# grub2-editenv - set "$(grub2-editenv - list | grep kernelopts) audit=1"
| | Rationale: | Each process on the system carries an "auditable" flag which indicates whether
its activities can be audited. Although auditd takes care of enabling
this for all processes which launch after it does, adding the kernel argument
ensures it is set for every process during boot. | | Severity: | low | | Rule ID: | xccdf_org.ssgproject.content_rule_grub2_audit_argument | | Identifiers: | CCE-95706-8 | | References: | | cis-csc | 1, 11, 12, 13, 14, 15, 16, 19, 3, 4, 5, 6, 7, 8 | | cjis | 5.4.1.1 | | cobit5 | APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS05.02, DSS05.03, DSS05.04, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01 | | cui | 3.3.1 | | hipaa | 164.308(a)(1)(ii)(D), 164.308(a)(5)(ii)(C), 164.310(a)(2)(iv), 164.310(d)(2)(iii), 164.312(b) | | isa-62443-2009 | 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4 | | isa-62443-2013 | SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 7.1, SR 7.6 | | iso27001-2013 | A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2 | | nist | AC-17(1), AU-14(1), AU-10, CM-6(a), IR-5(1) | | nist-csf | DE.AE-3, DE.AE-5, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4 | | ospp | FAU_GEN.1 | | pcidss | Req-10.3 | | os-srg | SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000473-GPOS-00218, SRG-OS-000254-GPOS-00095 | | pcidss4 | 10.7.2, 10.7 |
| |
|