Mapping | CCE | Rule Title | Description | Rationale | Variable Setting |
IA-2 AC-6(5) IA-4(b) |
N/A | Verify Only Root Has UID 0 |
If any account other than root has a UID of 0, this misconfiguration should
be investigated and the accounts other than root should be removed or have
their UID changed.
If the account is associated with system commands or applications the UID should be changed to one greater than "0" but less than "1000." Otherwise assign a UID greater than "1000" that has not already been assigned. |
An account has root authority if it has a UID of 0. Multiple accounts with a UID of 0 afford more opportunity for potential intruders to guess a password for a privileged account. Proper configuration of sudo is recommended to afford multiple system administrators access to root privileges in an accountable manner. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - chmod |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - chown |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - fchmod |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - fchmodat |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - fchown |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - fchownat |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - fremovexattr |
At a minimum, the audit system should collect file permission
changes for all users and root.
If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d: -a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod If the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod If the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - fsetxattr |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - lchown |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - lremovexattr |
At a minimum, the audit system should collect file permission
changes for all users and root.
If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d: -a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod If the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod If the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - lsetxattr |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - removexattr |
At a minimum, the audit system should collect file permission
changes for all users and root.
If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d: -a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod If the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod If the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Events that Modify the System's Discretionary Access Controls - setxattr |
At a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_modIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_modIf the system is 64 bit then also add the following line: -a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod |
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. | |
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Any Attempts to Run chcon |
At a minimum, the audit system should collect any execution attempt
of the chcon command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/chcon -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F path=/usr/bin/chcon -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Any Attempts to Run setfiles |
At a minimum, the audit system should collect any execution attempt
of the setfiles command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/setfiles -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F path=/usr/sbin/setfiles -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Any Attempts to Run setsebool |
At a minimum, the audit system should collect any execution attempt
of the setsebool command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/setsebool -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F path=/usr/sbin/setsebool -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) CM-6(a) |
N/A | Ensure auditd Collects File Deletion Events by User - rename |
At a minimum, the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S rename -F auid>=1000 -F auid!=unset -F key=deleteIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system: -a always,exit -F arch=ARCH -S rename -F auid>=1000 -F auid!=unset -F key=delete |
Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Ensure auditd Collects File Deletion Events by User - renameat |
At a minimum, the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S renameat -F auid>=1000 -F auid!=unset -F key=deleteIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system: -a always,exit -F arch=ARCH -S renameat -F auid>=1000 -F auid!=unset -F key=delete |
Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Ensure auditd Collects File Deletion Events by User - rmdir |
At a minimum, the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir -F auid>=1000 -F auid!=unset -F key=deleteIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system: -a always,exit -F arch=ARCH -S rmdir -F auid>=1000 -F auid!=unset -F key=delete |
Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Ensure auditd Collects File Deletion Events by User - unlink |
At a minimum, the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S unlink -F auid>=1000 -F auid!=unset -F key=deleteIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system: -a always,exit -F arch=ARCH -S unlink -F auid>=1000 -F auid!=unset -F key=delete |
Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Ensure auditd Collects File Deletion Events by User - unlinkat |
At a minimum, the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S unlinkat -F auid>=1000 -F auid!=unset -F key=deleteIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system: -a always,exit -F arch=ARCH -S unlinkat -F auid>=1000 -F auid!=unset -F key=delete |
Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence. | |
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on Kernel Module Unloading - delete_module |
To capture kernel module unloading events, use following line, setting ARCH to
either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S delete_module -F auid>=1000 -F auid!=unset -F key=modulesPlace to add the line depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the line to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the line to file /etc/audit/audit.rules. |
The removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel. | |
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on Kernel Module Loading and Unloading - finit_module |
If the auditd daemon is configured to use the augenrules program
to read audit rules during daemon startup (the default), add the following lines to a file
with suffix .rules in the directory /etc/audit/rules.d to capture kernel module
loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S finit_module -F auid>=1000 -F auid!=unset -F key=modulesIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file in order to capture kernel module loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system: -a always,exit -F arch=ARCH -S finit_module -F auid>=1000 -F auid!=unset -F key=modules |
The addition/removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel. | |
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on Kernel Module Loading - init_module |
To capture kernel module loading events, use following line, setting ARCH to
either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S init_module -F auid>=1000 -F auid!=unset -F key=modulesPlace to add the line depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the line to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the line to file /etc/audit/audit.rules. |
The addition of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel. | |
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Attempts to Alter Logon and Logout Events - faillock |
The audit system already collects login information for all users
and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing logon events:
-w /var/log/faillock -p wa -k loginsIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file in order to watch for unattempted manual edits of files involved in storing logon events: -w /var/log/faillock -p wa -k logins |
Manual editing of these files may indicate nefarious activity, such as an attacker attempting to remove evidence of an intrusion. | var_accounts_passwords_pam_faillock_dir=/var/log/faillock |
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Attempts to Alter Logon and Logout Events - lastlog |
The audit system already collects login information for all users
and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing logon events:
-w /var/log/lastlog -p wa -k loginsIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file in order to watch for unattempted manual edits of files involved in storing logon events: -w /var/log/lastlog -p wa -k logins |
Manual editing of these files may indicate nefarious activity, such as an attacker attempting to remove evidence of an intrusion. | |
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on Exporting to Media (successful) |
At a minimum, the audit system should collect media exportation
events for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=unset -F key=exportIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system: -a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=unset -F key=export |
The unauthorized exportation of data to external media could result in an information leak where classified information, Privacy Act information, and intellectual property could be lost. An audit trail should be created each time a filesystem is mounted to help identify and guard against information loss. | |
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - crontab |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/crontab -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/crontab -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - mount |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/mount -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/mount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - pam_timestamp_check |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/pam_timestamp_check -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/sbin/pam_timestamp_check -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - postdrop |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/postdrop -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/sbin/postdrop -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - postqueue |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/postqueue -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/sbin/postqueue -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - ssh-keysign |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/libexec/openssh/ssh-keysign -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/libexec/openssh/ssh-keysign -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - su |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/su -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/su -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - sudo |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - umount |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/umount -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/umount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - userhelper |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/userhelper -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/sbin/userhelper -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Unsuccessful Access Attempts to Files - creat |
At a minimum, the audit system should collect unauthorized file
accesses for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access |
Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Unsuccessful Access Attempts to Files - ftruncate |
At a minimum, the audit system should collect unauthorized file
accesses for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access |
Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Unsuccessful Access Attempts to Files - open |
At a minimum, the audit system should collect unauthorized file
accesses for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access |
Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Unsuccessful Access Attempts to Files - open_by_handle_at |
At a minimum, the audit system should collect unauthorized file
accesses for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access |
Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Unsuccessful Access Attempts to Files - openat |
At a minimum, the audit system should collect unauthorized file
accesses for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access |
Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise. | |
AU-2(d) AU-12(c) CM-6(a) |
N/A | Record Unsuccessful Access Attempts to Files - truncate |
At a minimum, the audit system should collect unauthorized file
accesses for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F arch=b32 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b32 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=accessIf the system is 64 bit then also add the following lines: -a always,exit -F arch=b64 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access -a always,exit -F arch=b64 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access |
Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise. | |
IA-2 CM-6(a) |
N/A | All GIDs referenced in /etc/passwd must be defined in /etc/group | Add a group to the system for each GID referenced without a corresponding group. | If a user is assigned the Group Identifier (GID) of a group not existing on the system, and a group with the Group Identifier (GID) is subsequently created, the user may have unintended rights to any files associated with the group. | |
IA-2 AC-3 CM-6(a) |
N/A | Require Authentication for Emergency Systemd Target |
Emergency mode is intended as a system recovery
method, providing a single user root access to the system
during a failed boot sequence.
By default, Emergency mode is protected by requiring a password and is set in /usr/lib/systemd/system/emergency.service. |
This prevents attackers with physical access from trivially bypassing security on the machine and gaining root access. Such accesses are further prevented by configuring the bootloader password. | |
IA-2 AC-3 CM-6(a) |
N/A | Require Authentication for Single User Mode |
Single-user mode is intended as a system recovery
method, providing a single user root access to the system by
providing a boot option at startup.
By default, single-user mode is protected by requiring a password and is set in /usr/lib/systemd/system/rescue.service. |
This prevents attackers with physical access from trivially bypassing security on the machine and gaining root access. Such accesses are further prevented by configuring the bootloader password. | |
AC-2(g) AU-3 AU-10 AU-2(d) AU-12(c) AU-14(1) AC-6(9) CM-6(a) SI-4(23) |
N/A | Enable auditd Service |
The auditd service is an essential userspace component of
the Linux Auditing System, as it is responsible for writing audit records to
disk.
The auditd service can be enabled with the following command:
$ sudo systemctl enable auditd.service |
Without establishing what type of events occurred, it would be difficult
to establish, correlate, and investigate the events leading up to an outage or attack.
Ensuring the auditd service is active ensures audit records
generated by the kernel are appropriately recorded.
Additionally, a properly configured audit subsystem ensures that actions of individual system users can be uniquely traced to those users so they can be held accountable for their actions. |
|
IA-2(1) IA-2(2) IA-2(3) IA-2(4) IA-2(6) IA-2(7) IA-2(11) CM-6(a) |
N/A | Enable Smart Card Login | To enable smart card authentication, consult the documentation at: | Smart card login provides two-factor authentication stronger than that provided by a username and password combination. Smart cards leverage PKI (public key infrastructure) in order to provide and verify credentials. | |
IA-2(1) CM-6(a) |
N/A | Configure PAM in SSSD Services |
SSSD should be configured to run SSSD pam services.
To configure SSSD to known SSH hosts, add pam
to services under the [sssd] section in
/etc/sssd/sssd.conf. For example:
[sssd] services = sudo, autofs, pam |
Using an authentication device, such as a CAC or token that is separate from the information system, ensures that even if the information system is compromised, that compromise will not affect credentials stored on the authentication device. | |
AC-2(2) AC-2(3) CM-6(a) |
N/A | Assign Expiration Date to Temporary Accounts |
Temporary accounts are established as part of normal account activation
procedures when there is a need for short-term accounts. In the event
temporary accounts are required, configure the system to
terminate them after a documented time period. For every temporary account, run the following command to set an expiration date on
it, substituting USER and YYYY-MM-DD
appropriately:
$ sudo chage -E YYYY-MM-DD USERYYYY-MM-DD indicates the documented expiration date for the account. For U.S. Government systems, the operating system must be configured to automatically terminate these types of accounts after a period of 72 hours. |
If temporary user accounts remain active when no longer needed or for
an excessive period, these accounts may be used to gain unauthorized access.
To mitigate this risk, automated termination of all temporary accounts
must be set upon account creation.
|
|
IA-2(3) IA-2(4) IA-2(8) IA-2(9) IA-2(11) |
N/A | Enable the GNOME3 Login Smartcard Authentication |
In the default graphical environment, smart card authentication
can be enabled on the login screen by setting enable-smartcard-authentication
to true.
To enable, add or edit enable-smartcard-authentication to /etc/dconf/db/local.d/00-security-settings. For example: [org/gnome/login-screen] enable-smartcard-authentication=trueOnce the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/login-screen/enable-smartcard-authenticationAfter the settings have been set, run dconf update. |
Smart card login provides two-factor authentication stronger than that provided by a username and password combination. Smart cards leverage PKI (public key infrastructure) in order to provide and verify credentials. | |
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Any Attempts to Run semanage |
At a minimum, the audit system should collect any execution attempt
of the semanage command for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules
during daemon startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/semanage -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file: -a always,exit -F path=/usr/sbin/semanage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - chage |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/chage -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/chage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - chsh |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/chsh -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/chsh -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - gpasswd |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/gpasswd -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/gpasswd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - newgrp |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/newgrp -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/newgrp -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - passwd |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AC-2(4) AU-2(d) AU-3 AU-3.1 AU-12(a) AU-12(c) AU-12.1(ii) AU-12.1(iv) AC-6(9) CM-6(a) MA-4(1)(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - unix_chkpwd |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/sbin/unix_chkpwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/sbin/unix_chkpwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threats.
Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity. |
|
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Events that Modify User/Group Information - /etc/group |
If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d, in order to capture events that modify
account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes: -w /etc/group -p wa -k audit_rules_usergroup_modification |
In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. | |
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Events that Modify User/Group Information - /etc/gshadow |
If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d, in order to capture events that modify
account changes:
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes: -w /etc/gshadow -p wa -k audit_rules_usergroup_modification |
In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. | |
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Events that Modify User/Group Information - /etc/security/opasswd |
If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d, in order to capture events that modify
account changes:
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes: -w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification |
In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. | |
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Events that Modify User/Group Information - /etc/passwd |
If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d, in order to capture events that modify
account changes:
-w /etc/passwd -p wa -k audit_rules_usergroup_modification If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes: -w /etc/passwd -p wa -k audit_rules_usergroup_modification |
In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. | |
AC-2(4) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Record Events that Modify User/Group Information - /etc/shadow |
If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d, in order to capture events that modify
account changes:
-w /etc/shadow -p wa -k audit_rules_usergroup_modification If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes: -w /etc/shadow -p wa -k audit_rules_usergroup_modification |
In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. | |
SI-2(5) SI-2(c) CM-6(a) |
N/A | Ensure Software Patches Installed |
If the system is joined to the ULN
or a yum server, run the following command to install updates:
$ sudo yum updateIf the system is not configured to use one of these sources, updates (in the form of RPM packages) can be manually downloaded from the ULN and installed using rpm. NOTE: U.S. Defense systems are required to be patched within 30 days or sooner as local policy dictates. |
Installing software updates is a fundamental mitigation against the exploitation of publicly-known vulnerabilities. If the most recent security patches and updates are not installed, unauthorized users may take advantage of weaknesses in the unpatched software. The lack of prompt attention to patching could result in a system compromise. | |
AC-2(5) AC-12 AC-17(a) SC-10 CM-6(a) |
N/A | Set SSH Client Alive Count Max to zero | The SSH server sends at most ClientAliveCountMax messages during a SSH session and waits for a response from the SSH client. The option ClientAliveInterval configures timeout after each ClientAliveCountMax message. If the SSH server does not receive a response from the client, then the connection is considered unresponsive and terminated. To ensure the SSH timeout occurs precisely when the ClientAliveInterval is set, set the ClientAliveCountMax to value of 0 in /etc/ssh/sshd_config: | This ensures a user login will be terminated as soon as the ClientAliveInterval is reached. | |
SI-2(6) CM-11(a) CM-11(b) CM-6(a) |
N/A | Ensure yum Removes Previous Package Versions | yum should be configured to remove previous software components after new versions have been installed. To configure yum to remove the previous software components after updating, set the clean_requirements_on_remove to 1 in /etc/yum.conf. | Previous versions of software components that are not removed from the information system after updates have been installed may be exploited by some adversaries. | |
AC-2(7)(b) AU-2(d) AU-12(c) AC-6(9) CM-6(a) |
N/A | Ensure auditd Collects System Administrator Actions |
At a minimum, the audit system should collect administrator actions
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the default),
add the following line to a file with suffix .rules in the directory
/etc/audit/rules.d:
-w /etc/sudoers -p wa -k actions -w /etc/sudoers.d/ -p wa -k actionsIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file: -w /etc/sudoers -p wa -k actions -w /etc/sudoers.d/ -p wa -k actions |
The actions taken by system administrators should be audited to keep a record of what was executed on the system, as well as, for accountability purposes. | |
AU-3 AU-3.1 AU-12(a) AU-12.1(ii) AU-12.1(iv)AU-12(c) MA-4(1)(a) |
N/A | Ensure auditd Collects Information on the Use of Privileged Commands - kmod |
At a minimum, the audit system should collect the execution of
privileged commands for all users and root. If the auditd daemon is
configured to use the augenrules program to read audit rules during
daemon startup (the default), add a line of the following form to a file with
suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F path=/usr/bin/kmod -F perm=x -F auid>=1000 -F auid!=unset -F key=privilegedIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules: -a always,exit -F path=/usr/bin/kmod -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged |
Without generating audit records that are specific to the security and mission needs of the organization, it would be difficult to establish, correlate, and investigate the events relating to an incident or identify those responsible for one. Audit records can be generated from various components within the information system (e.g., module or policy filter). | |
AC-3 AC-17(a) CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable Host-Based Authentication |
SSH's cryptographic host-based authentication is
more secure than .rhosts authentication. However, it is
not recommended that hosts unilaterally trust one another, even
within an organization.
The default SSH configuration disables host-based authentication. The appropriate configuration is used if no value is set for HostbasedAuthentication. To explicitly disable host-based authentication, add or correct the following line in /etc/ssh/sshd_config: HostbasedAuthentication no |
SSH trust relationships mean a compromise on one host can allow an attacker to move trivially to other hosts. | |
AC-3 AC-3(3)(a) AU-9 SC-7(21) |
N/A | Configure SELinux Policy |
The SELinux targeted policy is appropriate for
general-purpose desktops and servers, as well as systems in many other roles.
To configure the system to use this policy, add or correct the following line
in /etc/selinux/config:
SELINUXTYPE=targetedOther policies, such as mls, provide additional security labeling and greater confinement but are not compatible with many general-purpose use cases. |
Setting the SELinux policy to targeted or a more specialized policy
ensures the system will confine processes that are likely to be
targeted for exploitation, such as network or system services.
Note: During the development or debugging of SELinux modules, it is common to temporarily place non-production systems in permissive mode. In such temporary cases, SELinux policies should be developed, and once work is completed, the system should be reconfigured to . |
var_selinux_policy_name=targeted |
AC-3 AC-3(3)(a) AU-9 SC-7(21) |
N/A | Ensure SELinux State is Enforcing |
The SELinux state should be set to enforcing at
system boot time. In the file /etc/selinux/config, add or correct the
following line to configure the system to boot into enforcing mode:
SELINUX=enforcing |
Setting the SELinux state to enforcing ensures SELinux is able to confine potentially compromised processes to the security policy, which is designed to prevent them from causing damage to the system or further elevating their privileges. | var_selinux_state=enforcing |
AC-3(4) AC-6(10) |
N/A | Confine SELinux Users To Roles That Conform To Least Privilege |
Configure the operating system to confine SELinux users to roles that conform
to least privilege. Use the following command to map the "staff_u" SELinux user
to the "staff_r" and "sysadm_r" roles:
$ sudo semanage user -m staff_u -R staff_r -R sysadm_r Use the following command to map the "user_u" SELinux user to the "user_r" role: $ sudo semanage -m user_u -R user_r |
Preventing non-privileged users from executing privileged functions mitigates
the risk that unauthorized individuals or processes may gain unnecessary access
to information or privileges.
Privileged functions include, for example, establishing accounts, performing system integrity checks, or administering cryptographic key management activities. Non-privileged users are individuals who do not possess appropriate authorizations. Circumventing intrusion detection and prevention mechanisms or malicious code protection mechanisms are examples of privileged functions that require protection from non-privileged users. |
|
AC-3(4) AC-6(10) |
N/A | Elevate The SELinux Context When An Administrator Calls The Sudo Command |
Configure the operating system to elevate the SELinux context when an administrator calls
the sudo command.
Edit a file in the /etc/sudoers.d directory with the following command:
sudo visudo -f /etc/sudoers.d/CUSTOM_FILEUse the following example to build the CUSTOM_FILE in the /etc/sudoers.d directory to allow any administrator belonging to a designated sudoers admin group to elevate their SELinux context with the use of the sudo command: %wheel ALL=(ALL) TYPE=sysadm_t ROLE=sysadm_r ALL |
Preventing non-privileged users from executing privileged functions mitigates
the risk that unauthorized individuals or processes may gain unnecessary access
to information or privileges.
Privileged functions include, for example, establishing accounts, performing system integrity checks, or administering cryptographic key management activities. Non-privileged users are individuals who do not possess appropriate authorizations. Circumventing intrusion detection and prevention mechanisms or malicious code protection mechanisms are examples of privileged functions that require protection from non-privileged users. |
|
CM-3(5) | N/A | The mailx Package Is Installed |
A mail server is required for sending emails.
The mailx package can be installed with the following command:
$ sudo yum install mailx |
Emails can be used to notify designated personnel about important system events such as failures or warnings. | |
IA-4(e) AC-2(3) CM-6(a) |
N/A | Set Account Expiration Following Inactivity |
To specify the number of days after a password expires (which
signifies inactivity) until an account is permanently disabled, add or correct
the following line in /etc/default/useradd:
INACTIVE=35If a password is currently on the verge of expiration, then 35 day(s) remain(s) until the account is automatically disabled. However, if the password will not expire for another 60 days, then 60 days plus 35 day(s) could elapse until the account would be automatically disabled. See the useradd man page for more information. |
Inactive identifiers pose a risk to systems and applications because attackers may exploit an inactive identifier and potentially obtain undetected access to the system. Disabling inactive accounts ensures that accounts which may not have been responsibly removed are not available to attackers who may have compromised their credentials. Owners of inactive accounts will not notice if unauthorized access to their user account has been obtained. | var_account_disable_post_pw_expiration=35 |
AC-4 CM-7(b) CA-3(5) SC-7(21) CM-6(a) |
N/A | Configure the Firewalld Ports |
Configure the firewalld ports to allow approved services to have access to the system.
To configure firewalld to open ports, run the following command:
firewall-cmd --permanent --add-port=port_number/tcpTo configure firewalld to allow access for pre-defined services, run the following command: firewall-cmd --permanent --add-service=service_name |
In order to prevent unauthorized connection of devices, unauthorized transfer of information,
or unauthorized tunneling (i.e., embedding of data types within data types), organizations must
disable or restrict unused or unnecessary physical and logical ports/protocols on information
systems.
Operating systems are capable of providing a wide variety of functions and services. Some of the functions and services provided by default may not be necessary to support essential organizational operations. Additionally, it is sometimes convenient to provide multiple services from a single component (e.g., VPN and IPS); however, doing so increases risk over limiting the services provided by one component. To support the requirements and principles of least functionality, the operating system must support the organizational requirements, providing only essential capabilities and limiting the use of ports, protocols, and/or services to only those required, authorized, and approved to conduct official business. |
|
AC-4 CM-7(b) CA-3(5) SC-7(21) CM-6(a) |
N/A | Verify firewalld Enabled |
The firewalld service can be enabled with the following command:
$ sudo systemctl enable firewalld.service |
Access control methods provide the ability to enhance system security posture by restricting services and known good IP addresses and address ranges. This prevents connections from unknown hosts and protocols. | |
AU-4(1) | N/A | Appropriate Action Must be Setup When the Internal Audit Event Queue is Full | The audit system should have an action setup in the event the internal event queue becomes full. To setup an overflow action edit /etc/audisp/audispd.conf. Set overflow_action to one of the following values: syslog, single, halt. | The audit system should have an action setup in the event the internal event queue becomes full so that no data is lost. | |
IA-5(f) IA-5(1)(d) CM-6(a) |
N/A | Set Password Maximum Age |
To specify password maximum age for new accounts,
edit the file /etc/login.defs
and add or correct the following line:
PASS_MAX_DAYS 60A value of 180 days is sufficient for many environments. The DoD requirement is 60. The profile requirement is 60. |
Any password, no matter how complex, can eventually be cracked. Therefore, passwords
need to be changed periodically. If the operating system does not limit the lifetime
of passwords and force users to change their passwords, there is the risk that the
operating system passwords could be compromised.
Setting the password maximum age ensures users are required to periodically change their passwords. Requiring shorter password lifetimes increases the risk of users writing down the password in a convenient location subject to physical compromise. |
var_accounts_maximum_age_login_defs=60 |
IA-5(f) IA-5(1)(d) CM-6(a) |
N/A | Set Password Minimum Age |
To specify password minimum age for new accounts,
edit the file /etc/login.defs
and add or correct the following line:
PASS_MIN_DAYS 1A value of 1 day is considered sufficient for many environments. The DoD requirement is 1. The profile requirement is 1. |
Enforcing a minimum password lifetime helps to prevent repeated password
changes to defeat the password reuse or history enforcement requirement. If
users are allowed to immediately and continually change their password,
then the password could be repeatedly changed in a short period of time to
defeat the organization's policy regarding password reuse.
Setting the minimum password age protects against users cycling back to a favorite password after satisfying the password reuse requirement. |
var_accounts_minimum_age_login_defs=1 |
IA-5(c) IA-5(1)(a) CM-6(a) IA-5(4) |
N/A | Ensure PAM Enforces Password Requirements - Minimum Digit Characters | The pam_pwquality module's dcredit parameter controls requirements for usage of digits in a password. When set to a negative number, any password will be required to contain that many digits. When set to a positive number, pam_pwquality will grant +1 additional length credit for each digit. Modify the dcredit setting in /etc/security/pwquality.conf to require the use of a digit in passwords. |
Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised. Requiring digits makes password guessing attacks more difficult by ensuring a larger search space. |
|
IA-5(c) IA-5(1)(b) CM-6(a) IA-5(4) |
N/A | Ensure PAM Enforces Password Requirements - Minimum Different Characters |
The pam_pwquality module's difok parameter sets the number of characters
in a password that must not be present in and old password during a password change.
Modify the difok setting in /etc/security/pwquality.conf to equal 8 to require differing characters when changing passwords. |
Use of a complex password helps to increase the time and resources
required to compromise the password. Password complexity, or strength,
is a measure of the effectiveness of a password in resisting attempts
at guessing and brute–force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised. Requiring a minimum number of different characters during password changes ensures that newly changed passwords should not resemble previously compromised ones. Note that passwords which are changed on compromised systems will still be compromised, however. |
var_password_pam_difok=8 |
IA-5(c) IA-5(1)(a) CM-6(a) IA-5(4) |
N/A | Ensure PAM Enforces Password Requirements - Minimum Lowercase Characters | The pam_pwquality module's lcredit parameter controls requirements for usage of lowercase letters in a password. When set to a negative number, any password will be required to contain that many lowercase characters. When set to a positive number, pam_pwquality will grant +1 additional length credit for each lowercase character. Modify the lcredit setting in /etc/security/pwquality.conf to require the use of a lowercase character in passwords. |
Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possble combinations that need to be tested before the password is compromised. Requiring a minimum number of lowercase characters makes password guessing attacks more difficult by ensuring a larger search space. |
|
IA-5(c) IA-5(1)(a) CM-6(a) IA-5(4) |
N/A | Ensure PAM Enforces Password Requirements - Maximum Consecutive Repeating Characters from Same Character Class | The pam_pwquality module's maxclassrepeat parameter controls requirements for consecutive repeating characters from the same character class. When set to a positive number, it will reject passwords which contain more than that number of consecutive characters from the same character class. Modify the maxclassrepeat setting in /etc/security/pwquality.conf to equal 4 to prevent a run of (4 + 1) or more identical characters. |
Use of a complex password helps to increase the time and resources required to compromise the password.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting
attempts at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex a password, the greater the number of possible combinations that need to be tested before the password is compromised. |
var_password_pam_maxclassrepeat=4 |
IA-5(c) CM-6(a) IA-5(4) |
N/A | Set Password Maximum Consecutive Repeating Characters | The pam_pwquality module's maxrepeat parameter controls requirements for consecutive repeating characters. When set to a positive number, it will reject passwords which contain more than that number of consecutive characters. Modify the maxrepeat setting in /etc/security/pwquality.conf to equal 3 to prevent a run of (3 + 1) or more identical characters. |
Use of a complex password helps to increase the time and resources required to compromise the password.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at
guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised. Passwords with excessive repeating characters may be more vulnerable to password-guessing attacks. |
var_password_pam_maxrepeat=3 |
IA-5(c) IA-5(1)(a) CM-6(a) IA-5(4) |
N/A | Ensure PAM Enforces Password Requirements - Minimum Different Categories |
The pam_pwquality module's minclass parameter controls
requirements for usage of different character classes, or types, of character
that must exist in a password before it is considered valid. For example,
setting this value to three (3) requires that any password must have characters
from at least three different categories in order to be approved. The default
value is zero (0), meaning there are no required classes. There are four
categories available:
* Upper-case characters * Lower-case characters * Digits * Special characters (for example, punctuation)Modify the minclass setting in /etc/security/pwquality.conf entry to require 4 differing categories of characters when changing passwords. |
Use of a complex password helps to increase the time and resources required to compromise the password.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts
at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised. Requiring a minimum number of character categories makes password guessing attacks more difficult by ensuring a larger search space. |
var_password_pam_minclass=4 |
IA-5(c) IA-5(1)(a) CM-6(a) IA-5(4) |
N/A | Ensure PAM Enforces Password Requirements - Minimum Length | The pam_pwquality module's minlen parameter controls requirements for minimum characters required in a password. Add minlen=15 after pam_pwquality to set minimum password length requirements. |
The shorter the password, the lower the number of possible combinations
that need to be tested before the password is compromised.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks. Password length is one factor of several that helps to determine strength and how long it takes to crack a password. Use of more characters in a password helps to exponentially increase the time and/or resources required to compromise the password. |
var_password_pam_minlen=15 |
IA-5(c) IA-5(1)(a) CM-6(a) IA-5(4) |
N/A | Ensure PAM Enforces Password Requirements - Minimum Special Characters | The pam_pwquality module's ocredit= parameter controls requirements for usage of special (or "other") characters in a password. When set to a negative number, any password will be required to contain that many special characters. When set to a positive number, pam_pwquality will grant +1 additional length credit for each special character. Modify the ocredit setting in /etc/security/pwquality.conf to equal 1 to require use of a special character in passwords. |
Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised. Requiring a minimum number of special characters makes password guessing attacks more difficult by ensuring a larger search space. |
var_password_pam_ocredit=1 |
IA-5(c) IA-5(1)(a) CM-6(a) IA-5(4) |
N/A | Ensure PAM Enforces Password Requirements - Minimum Uppercase Characters | The pam_pwquality module's ucredit= parameter controls requirements for usage of uppercase letters in a password. When set to a negative number, any password will be required to contain that many uppercase characters. When set to a positive number, pam_pwquality will grant +1 additional length credit for each uppercase character. Modify the ucredit setting in /etc/security/pwquality.conf to require the use of an uppercase character in passwords. |
Use of a complex password helps to increase the time and resources required to compromise the password.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts
at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised. |
|
IA-5(f) IA-5(1)(d) CM-6(a) |
N/A | Set Existing Passwords Maximum Age |
Configure non-compliant accounts to enforce a 60-day maximum password lifetime
restriction by running the following command:
$ sudo chage -M 60 USER |
Any password, no matter how complex, can eventually be cracked. Therefore, passwords need to be changed periodically. If the operating system does not limit the lifetime of passwords and force users to change their passwords, there is the risk that the operating system passwords could be compromised. | var_accounts_maximum_age_login_defs=60 |
IA-5(f) IA-5(1)(d) CM-6(a) |
N/A | Set Existing Passwords Minimum Age |
Configure non-compliant accounts to enforce a 24 hours/1 day minimum password
lifetime by running the following command:
$ sudo chage -m 1 USER |
Enforcing a minimum password lifetime helps to prevent repeated password changes to defeat the password reuse or history enforcement requirement. If users are allowed to immediately and continually change their password, the password could be repeatedly changed in a short period of time to defeat the organization's policy regarding password reuse. | |
AU-5(b) SC-24 CM-6(a) |
N/A | Shutdown System When Auditing Failures Occur |
If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to to the bottom of a file with suffix
.rules in the directory /etc/audit/rules.d:
-f printkIf the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to the bottom of the /etc/audit/audit.rules file: -f printk |
It is critical for the appropriate personnel to be aware if a system
is at risk of failing to process audit logs as required. Without this
notification, the security personnel may be unaware of an impending failure of
the audit capability, and system operation may be adversely affected.
Audit processing failures include software/hardware errors, failures in the audit capturing mechanisms, and audit storage capacity being reached or exceeded. |
var_audit_failure_mode=printk |
AU-5(b) AU-5(2) AU-5(1) AU-5(4) CM-6(a) |
N/A | Configure audispd's Plugin disk_full_action When Disk Is Full |
Configure the action the operating system takes if the disk the audit records
are written to becomes full. Edit the file /etc/audisp/audisp-remote.conf.
Add or modify the following line, substituting ACTION appropriately:
disk_full_action = ACTIONSet this value to single to cause the system to switch to single user mode for corrective action. Acceptable values also include syslog and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined. |
Taking appropriate action in case of a filled audit storage volume will minimize the possibility of losing audit records. | |
AU-5(b) AU-5(2) AU-5(1) AU-5(4) CM-6(a) |
N/A | Configure audispd's Plugin network_failure_action On Network Failure |
Configure the action the operating system takes if there is an error sending
audit records to a remote system. Edit the file /etc/audisp/audisp-remote.conf.
Add or modify the following line, substituting ACTION appropriately:
network_failure_action = ACTIONSet this value to single to cause the system to switch to single user mode for corrective action. Acceptable values also include syslog and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined. This profile configures the action to be single. |
Taking appropriate action when there is an error sending audit records to a remote system will minimize the possibility of losing audit records. | var_audispd_network_failure_action=single |
AU-5(b) AU-5(2) AU-5(1) AU-5(4) CM-6(a) |
N/A | Configure auditd space_left Action on Low Disk Space |
The auditd service can be configured to take an action
when disk space starts to run low.
Edit the file /etc/audit/auditd.conf. Modify the following line,
substituting ACTION appropriately:
space_left_action = ACTIONPossible values for ACTION are described in the auditd.conf man page. These include:
|
Notifying administrators of an impending disk space problem may allow them to take corrective action prior to any disruption. | |
AU-5(b) AU-5(2) AU-5(1) AU-5(4) CM-6(a) |
N/A | Configure auditd space_left on Low Disk Space |
The auditd service can be configured to take an action
when disk space is running low but prior to running out of space completely.
Edit the file /etc/audit/auditd.conf. Add or modify the following line,
substituting PERCENTAGE appropriately:
space_left = PERCENTAGE%Set this value to at least 25 to cause the system to notify the user of an issue. |
Notifying administrators of an impending disk space problem may allow them to take corrective action prior to any disruption. | |
IA-5(c) IA-5(1)(c) CM-6(a) |
N/A | Set Password Hashing Algorithm in /etc/libuser.conf |
In /etc/libuser.conf, add or correct the following line in its [defaults]
section to ensure the system will use the sha512
algorithm for password hashing:
crypt_style = sha512 |
Passwords need to be protected at all times, and encryption is the standard method for
protecting passwords. If passwords are not encrypted, they can be plainly read
(i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm
are no more protected than if they are kept in plain text.
This setting ensures user and group account administration utilities are configured to store only encrypted representations of passwords. Additionally, the crypt_style configuration option in /etc/libuser.conf ensures the use of a strong hashing algorithm that makes password cracking attacks more difficult. |
var_password_hashing_algorithm_pam=sha512 |
IA-5(c) IA-5(1)(c) CM-6(a) |
N/A | Set Password Hashing Algorithm in /etc/login.defs |
In /etc/login.defs, add or update the following line to ensure the system will use
SHA512 as the hashing algorithm:
ENCRYPT_METHOD SHA512 |
Passwords need to be protected at all times, and encryption is the standard method for
protecting passwords. If passwords are not encrypted, they can be plainly read
(i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm
are no more protected than if they are kept in plain text.
Using a stronger hashing algorithm makes password cracking attacks more difficult. |
var_password_hashing_algorithm=SHA512 |
IA-5(c) IA-5(1)(c) CM-6(a) |
N/A | Set PAM''s Password Hashing Algorithm - password-auth |
The PAM system service can be configured to only store encrypted representations of passwords.
In /etc/pam.d/password-auth, the password section of the file controls which
PAM modules to execute during a password change.
Set the pam_unix.so module in the password section to include the option
sha512 and no other hashing
algorithms as shown below:
password sufficient pam_unix.so sha512 other arguments... This will help ensure that new passwords for local users will be stored using the sha512 algorithm. |
Passwords need to be protected at all times, and encryption is the standard method for
protecting passwords. If passwords are not encrypted, they can be plainly read
(i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm
are no more protected than if they are kept in plain text.
This setting ensures user and group account administration utilities are configured to store only encrypted representations of passwords. Additionally, the crypt_style configuration option in /etc/libuser.conf ensures the use of a strong hashing algorithm that makes password cracking attacks more difficult. |
var_password_hashing_algorithm_pam=sha512 |
IA-5(c) IA-5(1)(c) CM-6(a) |
N/A | Set PAM''s Password Hashing Algorithm |
The PAM system service can be configured to only store encrypted representations of passwords.
In "/etc/pam.d/system-auth", the password section of the file controls which
PAM modules to execute during a password change.
Set the pam_unix.so module in the password section to include the option
sha512 and no other hashing
algorithms as shown below:
password sufficient pam_unix.so sha512 other arguments... This will help ensure that new passwords for local users will be stored using the sha512 algorithm. |
Passwords need to be protected at all times, and encryption is the standard method for
protecting passwords. If passwords are not encrypted, they can be plainly read
(i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm
are no more protected than if they are kept in plain text.
This setting ensures user and group account administration utilities are configured to store only encrypted representations of passwords. Additionally, the crypt_style configuration option in /etc/libuser.conf ensures the use of a strong hashing algorithm that makes password cracking attacks more difficult. |
var_password_hashing_algorithm_pam=sha512 |
IA-5(e) | N/A | Ensure Default SNMP Password Is Not Used |
Edit /etc/snmp/snmpd.conf, remove or change the default community strings of
public and private.
This profile configures new read-only community string to changemero and read-write community string to changemerw.
Once the default community strings have been changed, restart the SNMP service:
$ sudo systemctl restart snmpd |
Whether active or not, default simple network management protocol (SNMP) community strings must be changed to maintain security. If the service is running with the default authenticators, then anyone can gather data about the system and the network and use the information to potentially compromise the integrity of the system and network(s). | var_snmpd_rw_string=changemerw var_snmpd_ro_string=changemero |
SC-5 | N/A | Configure Kernel to Rate Limit Sending of Duplicate TCP Acknowledgments |
Make sure that the system is configured to limit the maximal rate for sending
duplicate acknowledgments in response to incoming TCP packets that are for
an existing connection but that are invalid due to any of these reasons:
(a) out-of-window sequence number, (b) out-of-window acknowledgment number,
or (c) PAWS (Protection Against Wrapped Sequence numbers) check failure
This measure protects against or limits effects of DoS attacks against the system.
Set the system to implement rate-limiting measures by adding the following line to
/etc/sysctl.conf or a configuration file in the /etc/sysctl.d/ directory
(or modify the line to have the required value):
net.ipv4.tcp_invalid_ratelimit = five_hundredIssue the following command to make the changes take effect: # sysctl --system |
Denial of Service (DoS) is a condition when a resource is not available for legitimate users. When
this occurs, the organization either cannot accomplish its mission or must
operate at degraded capacity.
This can help mitigate simple “ack loop” DoS attacks, wherein a buggy or malicious middlebox or man-in-the-middle can rewrite TCP header fields in manner that causes each endpoint to think that the other is sending invalid TCP segments, thus causing each side to send an unterminating stream of duplicate acknowledgments for invalid segments. |
sysctl_net_ipv4_tcp_invalid_ratelimit_value=five_hundred |
CM-5(1) AU-7(a) AU-7(b) AU-8(b) AU-12(3) AC-6(9) |
N/A | Record Events When Privileged Executables Are Run |
Verify the system generates an audit record when privileged functions are executed.
If audit is using the "auditctl" tool to load the rules, run the following command:
$ sudo grep execve /etc/audit/audit.rulesIf audit is using the "augenrules" tool to load the rules, run the following command: $ sudo grep -r execve /etc/audit/rules.d -a always,exit -F arch=b32 -S execve -C uid!=euid -F euid=0 -k setuid -a always,exit -F arch=b64 -S execve -C uid!=euid -F euid=0 -k setuid -a always,exit -F arch=b32 -S execve -C gid!=egid -F egid=0 -k setgid -a always,exit -F arch=b64 -S execve -C gid!=egid -F egid=0 -k setgidIf both the "b32" and "b64" audit rules for "SUID" files are not defined, this is a finding. If both the "b32" and "b64" audit rules for "SGID" files are not defined, this is a finding. |
Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised information system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider threats and the advanced persistent threat. | |
IA-5(1) AU-5(a) AU-5(2) CM-6(a) |
N/A | Configure auditd mail_acct Action on Low Disk Space |
The auditd service can be configured to send email to
a designated account in certain situations. Add or correct the following line
in /etc/audit/auditd.conf to ensure that administrators are notified
via email for those situations:
action_mail_acct = root |
Email sent to the root account is typically aliased to the administrators of the system, who can take appropriate action. | var_auditd_action_mail_acct=root |
IA-5(1)(a) IA-5(c) CM-6(a) |
N/A | Prevent Login to Accounts With Empty Password | If an account is configured for password authentication but does not have an assigned password, it may be possible to log into the account without authentication. Remove any instances of the nullok in /etc/pam.d/system-auth and /etc/pam.d/password-auth to prevent logins with empty passwords. | If an account has an empty password, anyone could log in and run commands with the privileges of that account. Accounts with empty passwords should never be used in operational environments. | |
IA-5(1)(a) IA-5(1).1(v) IA-5(1)(a) |
N/A | Configure PAMs passwd Module To Implement system-auth Substack When Changing Passwords |
Verify that pam is configured to use /etc/pam.d/system-auth
when changing passwords. Look for the following line in /etc/pam.d/passwd:
password substack system-auth |
Including system-auth from the passwd module ensures that the user must pass through the PAM configuration for system authentication as found in /etc/pam.d/system-auth when changing passwords. | |
CM-5(3) SI-7 SC-12 SC-12(3) CM-6(a) SA-12 SA-12(10) CM-11(a) CM-11(b) |
N/A | Ensure gpgcheck Enabled In Main yum Configuration |
The gpgcheck option controls whether
RPM packages' signatures are always checked prior to installation.
To configure yum to check package signatures before installing
them, ensure the following line appears in /etc/yum.conf in
the [main] section:
gpgcheck=1 |
Changes to any software components can have significant effects on the
overall security of the operating system. This requirement ensures the
software has not been tampered with and that it has been provided by a
trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must be signed with a certificate recognized and approved by the organization. Verifying the authenticity of the software prior to installation validates the integrity of the patch or upgrade received from a vendor. This ensures the software has not been tampered with and that it has been provided by a trusted vendor. Self-signed certificates are disallowed by this requirement. Certificates used to verify the software must be from an approved Certificate Authority (CA). |
|
CM-5(3) SI-7 SC-12 SC-12(3) CM-6(a) CM-11(a) CM-11(b) |
N/A | Ensure Oracle Linux GPG Key Installed |
To ensure the system can cryptographically verify base software
packages come from Oracle (and to connect to the Unbreakable Linux Network to
receive them), the Oracle GPG key must properly be installed.
To install the Oracle GPG key, run:
$ sudo uln_registerIf the system is not connected to the Internet, then install the Oracle GPG key from trusted media such as the Oracle installation CD-ROM or DVD. Assuming the disc is mounted in /media/cdrom, use the following command as the root user to import it into the keyring: $ sudo rpm --import /media/cdrom/RPM-GPG-KEY-oracleAlternatively, the key may be pre-loaded during the Oracle installation. In such cases, the key can be installed by running the following command: sudo rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-oracle |
Changes to software components can have significant effects on the overall security of the operating system. This requirement ensures the software has not been tampered with and that it has been provided by a trusted vendor. The Oracle GPG key is necessary to cryptographically verify packages are from Oracle. | |
CM-6(a) AC-7(a) IA-5(4) |
N/A | Ensure PAM Enforces Password Requirements - Authentication Retry Prompts Permitted Per-Session | To configure the number of retry prompts that are permitted per-session: Edit the pam_pwquality.so statement in /etc/pam.d/system-auth to show retry=3, or a lower value if site policy is more restrictive. The DoD requirement is a maximum of 3 prompts per session. | Setting the password retry prompts that are permitted on a per-session basis to a low value requires some software, such as SSH, to re-connect. This can slow down and draw additional attention to some types of password-guessing attacks. Note that this is different from account lockout, which is provided by the pam_faillock module. | var_password_pam_retry=3 |
CM-6(a) AC-7(a) |
N/A | Lock Accounts After Failed Password Attempts | This rule configures the system to lock out accounts after a number of incorrect login attempts using pam_faillock.so. pam_faillock.so module requires multiple entries in pam files. These entries must be carefully defined to work as expected. Ensure that the file /etc/security/faillock.conf contains the following entry: deny = <count> Where count should be less than or equal to 3 and greater than 0. In order to avoid errors when manually editing these files, it is recommended to use the appropriate tools, such as authselect or authconfig, depending on the OS version. | By limiting the number of failed logon attempts, the risk of unauthorized system access via user password guessing, also known as brute-forcing, is reduced. Limits are imposed by locking the account. | var_accounts_passwords_pam_faillock_deny=3 |
CM-6(a) AC-7(b) IA-5(c) |
N/A | Configure the root Account for Failed Password Attempts | This rule configures the system to lock out the root account after a number of incorrect login attempts using pam_faillock.so. pam_faillock.so module requires multiple entries in pam files. These entries must be carefully defined to work as expected. In order to avoid errors when manually editing these files, it is recommended to use the appropriate tools, such as authselect or authconfig, depending on the OS version. | By limiting the number of failed logon attempts, the risk of unauthorized system access via user password guessing, also known as brute-forcing, is reduced. Limits are imposed by locking the account. | |
CM-6(a) AC-7(a) |
N/A | Set Interval For Counting Failed Password Attempts | Utilizing pam_faillock.so, the fail_interval directive configures the system to lock out an account after a number of incorrect login attempts within a specified time period. Ensure that the file /etc/security/faillock.conf contains the following entry: fail_interval = <interval-in-seconds> where interval-in-seconds is 900 or greater. In order to avoid errors when manually editing these files, it is recommended to use the appropriate tools, such as authselect or authconfig, depending on the OS version. | By limiting the number of failed logon attempts the risk of unauthorized system access via user password guessing, otherwise known as brute-forcing, is reduced. Limits are imposed by locking the account. | var_accounts_passwords_pam_faillock_fail_interval=900 |
CM-6(a) AC-7(b) |
N/A | Set Lockout Time for Failed Password Attempts | This rule configures the system to lock out accounts during a specified time period after a number of incorrect login attempts using pam_faillock.so. Ensure that the file /etc/security/faillock.conf contains the following entry: unlock_time=<interval-in-seconds> where interval-in-seconds is never or greater. pam_faillock.so module requires multiple entries in pam files. These entries must be carefully defined to work as expected. In order to avoid any errors when manually editing these files, it is recommended to use the appropriate tools, such as authselect or authconfig, depending on the OS version. If unlock_time is set to 0, manual intervention by an administrator is required to unlock a user. This should be done using the faillock tool. | By limiting the number of failed logon attempts the risk of unauthorized system access via user password guessing, otherwise known as brute-forcing, is reduced. Limits are imposed by locking the account. | var_accounts_passwords_pam_faillock_unlock_time=never |
CM-6(a) | N/A | Build and Test AIDE Database |
Run the following command to generate a new database:
$ sudo /usr/sbin/aide --initBy default, the database will be written to the file /var/lib/aide/aide.db.new.gz. Storing the database, the configuration file /etc/aide.conf, and the binary /usr/sbin/aide (or hashes of these files), in a secure location (such as on read-only media) provides additional assurance about their integrity. The newly-generated database can be installed as follows: $ sudo cp /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gzTo initiate a manual check, run the following command: $ sudo /usr/sbin/aide --checkIf this check produces any unexpected output, investigate. |
For AIDE to be effective, an initial database of "known-good" information about files must be captured and it should be able to be verified against the installed files. | |
CM-6(a) CM-3(5) |
N/A | Configure Notification of Post-AIDE Scan Details |
AIDE should notify appropriate personnel of the details of a scan after the scan has been run.
If AIDE has already been configured for periodic execution in /etc/crontab, append the
following line to the existing AIDE line:
| /bin/mail -s "$(hostname) - AIDE Integrity Check" root@localhostOtherwise, add the following line to /etc/crontab: 05 4 * * * root /usr/sbin/aide --check | /bin/mail -s "$(hostname) - AIDE Integrity Check" root@localhostAIDE can be executed periodically through other means; this is merely one example. |
Unauthorized changes to the baseline configuration could make the system vulnerable
to various attacks or allow unauthorized access to the operating system. Changes to
operating system configurations can have unintended side effects, some of which may
be relevant to security.
Detecting such changes and providing an automated response can help avoid unintended, negative consequences that could ultimately affect the security state of the operating system. The operating system's Information Management Officer (IMO)/Information System Security Officer (ISSO) and System Administrators (SAs) must be notified via email and/or monitoring system trap when there is an unauthorized modification of a configuration item. |
|
CM-6 AU-3 |
N/A | Set type of computer node name logging in audit logs | To configure Audit daemon to use a unique identifier as computer node name in the audit events, set name_format to hostname in /etc/audit/auditd.conf. | If option name_format is left at its default value of none, audit events from different computers may be hard to distinguish. | var_auditd_name_format=hostname |
CM-6(a) AU-8(1)(b) AU-12(1) |
N/A | Configure Time Service Maxpoll Interval |
The maxpoll should be configured to
18_hours in /etc/ntp.conf or
/etc/chrony.conf (or /etc/chrony.d/) to continuously poll time servers. To configure
maxpoll in /etc/ntp.conf or /etc/chrony.conf (or /etc/chrony.d/)
add the following after each server, pool or peer entry:
maxpoll 18_hoursto server directives. If using chrony, any pool directives should be configured too. |
Inaccurate time stamps make it more difficult to correlate events and can lead to an inaccurate analysis. Determining the correct time a particular event occurred on a system is critical when conducting forensic analysis and investigating system events. Sources outside the configured acceptable allowance (drift) may be inaccurate. Synchronizing internal information system clocks provides uniformity of time stamps for information systems with multiple system clocks and systems connected over a network. Organizations should consider endpoints that may not have regular access to the authoritative time server (e.g., mobile, teleworking, and tactical endpoints). | var_time_service_set_maxpoll=18_hours |
CM-6(a) AC-6(1) CM-7(b) |
N/A | Disable Ctrl-Alt-Del Reboot Key Sequence in GNOME3 |
By default, GNOME will reboot the system if the
Ctrl-Alt-Del key sequence is pressed.
To configure the system to ignore the Ctrl-Alt-Del key sequence from the Graphical User Interface (GUI) instead of rebooting the system, add or set logout to [''] in /etc/dconf/db/local.d/00-security-settings. For example: [org/gnome/settings-daemon/plugins/media-keys] logout=['']Once the settings have been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/settings-daemon/plugins/media-keys/logoutAfter the settings have been set, run dconf update. |
A locally logged-in user who presses Ctrl-Alt-Del, when at the console, can reboot the system. If accidentally pressed, as could happen in the case of mixed OS environment, this can create the risk of short-term loss of availability of systems due to unintentional reboot. | |
CM-6(a) AC-23 |
N/A | Disable the GNOME3 Login User List |
In the default graphical environment, users logging directly into the
system are greeted with a login screen that displays all known users.
This functionality should be disabled by setting disable-user-list
to true.
To disable, add or edit disable-user-list to /etc/dconf/db/local.d/00-security-settings. For example: [org/gnome/login-screen] disable-user-list=trueOnce the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/login-screen/disable-user-listAfter the settings have been set, run dconf update. |
Leaving the user list enabled is a security risk since it allows anyone with physical access to the system to quickly enumerate known user accounts without logging in. | |
CM-6(a) AC-11(a) |
N/A | Enable GNOME3 Screensaver Idle Activation |
To activate the screensaver in the GNOME3 desktop after a period of inactivity,
add or set idle-activation-enabled to true in
/etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/desktop/screensaver] idle-activation-enabled=trueOnce the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/desktop/screensaver/idle-activation-enabledAfter the settings have been set, run dconf update. |
A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate
physical vicinity of the information system but does not logout because of the temporary nature of the absence.
Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity,
GNOME desktops can be configured to identify when a user's session has idled and take action to initiate the
session lock.
Enabling idle activation of the screensaver ensures the screensaver will be activated after the idle delay. Applications requiring continuous, real-time screen display (such as network management products) require the login session does not have administrator rights and the display station is located in a controlled-access area. |
|
CM-6(a) | N/A | Ensure Users Cannot Change GNOME3 Screensaver Idle Activation |
If not already configured, ensure that users cannot change GNOME3 screensaver lock settings
by adding /org/gnome/desktop/screensaver/idle-activation-enabledto /etc/dconf/db/local.d/00-security-settings. For example: /org/gnome/desktop/screensaver/idle-activation-enabledAfter the settings have been set, run dconf update. |
A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to logout because of the temporary nature of the absense. | |
CM-6(a) | N/A | Enable GNOME3 Screensaver Lock After Idle Period |
To activate locking of the screensaver in the GNOME3 desktop when it is activated,
add or set lock-enabled to true in
/etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/desktop/screensaver] lock-enabled=trueOnce the settings have been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/desktop/screensaver/lock-enabledAfter the settings have been set, run dconf update. |
A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to logout because of the temporary nature of the absense. | |
CM-6(a) | N/A | Ensure Users Cannot Change GNOME3 Screensaver Lock After Idle Period |
If not already configured, ensure that users cannot change GNOME3 screensaver lock settings
by adding /org/gnome/desktop/screensaver/lock-enabledto /etc/dconf/db/local.d/locks/00-security-settings. For example: /org/gnome/desktop/screensaver/lock-enabledAfter the settings have been set, run dconf update. |
A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to logout because of the temporary nature of the absense. | |
CM-6(a) | N/A | Ensure Users Cannot Change GNOME3 Screensaver Settings |
If not already configured, ensure that users cannot change GNOME3 screensaver lock settings
by adding /org/gnome/desktop/screensaver/lock-delay
to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/screensaver/lock-delayAfter the settings have been set, run dconf update. |
A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not logout because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, GNOME desktops can be configured to identify when a user's session has idled and take action to initiate the session lock. As such, users should not be allowed to change session settings. | |
CM-6(a) | N/A | Ensure Users Cannot Change GNOME3 Session Idle Settings |
If not already configured, ensure that users cannot change GNOME3 session idle settings
by adding /org/gnome/desktop/session/idle-delay
to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/session/idle-delayAfter the settings have been set, run dconf update. |
A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not logout because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, GNOME desktops can be configured to identify when a user's session has idled and take action to initiate the session lock. As such, users should not be allowed to change session settings. | |
CM-6(a) AC-6(1) |
N/A | Ensure All World-Writable Directories Are Owned by a System Account | All directories in local partitions which are world-writable should be owned by root or another system account. If any world-writable directories are not owned by a system account, this should be investigated. Following this, the files should be deleted or assigned to an appropriate owner. | Allowing a user account to own a world-writable directory is undesirable because it allows the owner of that directory to remove or replace any files that may be placed in the directory by other users. | |
CM-6(a) AC-6(1) |
N/A | Ensure All World-Writable Directories Are Group Owned by a System Account | All directories in local partitions which are world-writable should be group owned by root or another system account. If any world-writable directories are not group owned by a system account, this should be investigated. Following this, the files should be deleted or assigned to an appropriate group. | Allowing a user account to group own a world-writable directory is undesirable because it allows the owner of that directory to remove or replace any files that may be placed in the directory by other users. | |
CM-6(a) AC-6(1) |
N/A | Disable Ctrl-Alt-Del Reboot Activation |
By default, SystemD will reboot the system if the Ctrl-Alt-Del
key sequence is pressed.
To configure the system to ignore the Ctrl-Alt-Del key sequence from the command line instead of rebooting the system, do either of the following: ln -sf /dev/null /etc/systemd/system/ctrl-alt-del.targetor systemctl mask ctrl-alt-del.target Do not simply delete the /usr/lib/systemd/system/ctrl-alt-del.service file, as this file may be restored during future system updates. |
A locally logged-in user who presses Ctrl-Alt-Del, when at the console, can reboot the system. If accidentally pressed, as could happen in the case of mixed OS environment, this can create the risk of short-term loss of availability of systems due to unintentional reboot. | |
CM-6(a) AC-6(1) |
N/A | Verify Group Who Owns /etc/cron.allow file |
If /etc/cron.allow exists, it must be group-owned by root.
To properly set the group owner of /etc/cron.allow , run the command:
$ sudo chgrp root /etc/cron.allow |
If the owner of the cron.allow file is not set to root, the possibility exists for an unauthorized user to view or edit sensitive information. | |
CM-6(a) AC-6(1) |
N/A | Verify User Who Owns /etc/cron.allow file |
If /etc/cron.allow exists, it must be owned by root.
To properly set the owner of /etc/cron.allow , run the command:
$ sudo chown root /etc/cron.allow |
If the owner of the cron.allow file is not set to root, the possibility exists for an unauthorized user to view or edit sensitive information. | |
CM-6(a) AC-6(1) AU-9(4) |
N/A | System Audit Logs Must Be Owned By Root |
All audit logs must be owned by root user and group. By default, the path for audit log is /var/log/audit/. To properly set the owner of /var/log/audit , run the command:
$ sudo chown root /var/log/auditTo properly set the owner of /var/log/audit/* , run the command:
$ sudo chown root /var/log/audit/* |
Unauthorized disclosure of audit records can reveal system and configuration data to attackers, thus compromising its confidentiality. | |
CM-6(a) AC-6(1) |
N/A | Ensure All Files Are Owned by a Group |
If any file is not group-owned by a group present in /etc/group, the cause of the lack of
group-ownership must be investigated. Following this, those files should be deleted or
assigned to an appropriate group.
Locate the mount points related to local devices by the following command:
$ findmnt -n -l -k -it $(awk '/nodev/ { print $2 }' /proc/filesystems | paste -sd,)For all mount points listed by the previous command, it is necessary to search for files which do not belong to a valid group using the following command: $ sudo find MOUNTPOINT -xdev -nogroup 2>/dev/null |
Unowned files do not directly imply a security problem, but they are generally a sign that something is amiss. They may be caused by an intruder, by incorrect software installation or draft software removal, or by failure to remove all files belonging to a deleted account, or other similar cases. The files should be repaired so they will not cause problems when accounts are created in the future, and the cause should be discovered and addressed. | |
CM-6(a) AC-6(1) AU-9(4) |
N/A | System Audit Logs Must Have Mode 0640 or Less Permissive |
Determine where the audit logs are stored with the following command:
$ sudo grep -iw log_file /etc/audit/auditd.conf log_file = /var/log/audit/audit.logConfigure the audit log to be protected from unauthorized read access by setting the correct permissive mode with the following command: $ sudo chmod 0600 audit_log_fileBy default, audit_log_file is "/var/log/audit/audit.log". |
If users can write to audit logs, audit trails can be modified or destroyed. | |
CM-6(a) AC-6(1) CM-7(b) |
N/A | Disable GDM Automatic Login |
The GNOME Display Manager (GDM) can allow users to automatically login without
user interaction or credentials. User should always be required to authenticate themselves
to the system that they are authorized to use. To disable user ability to automatically
login to the system, set the AutomaticLoginEnable to false in the
[daemon] section in /etc/gdm/custom.conf. For example:
[daemon] AutomaticLoginEnable=false |
Failure to restrict system access to authenticated users negatively impacts operating system security. | |
CM-6(a) | N/A | Set the Boot Loader Admin Username to a Non-Default Value |
The grub2 boot loader should have a superuser account and password
protection enabled to protect boot-time settings.
To maximize the protection, select a password-protected superuser account with unique name, and modify the /etc/grub.d/01_users configuration file to reflect the account name change. Do not to use common administrator account names like root, admin, or administrator for the grub2 superuser account. Change the superuser to a different username (The default is 'root'). $ sed -i 's/\(set superusers=\).*/\1"<unique user ID>"/g' /etc/grub.d/01_users Once the superuser account has been added, update the grub.cfg file by running: grubby --update-kernel=ALL |
Having a non-default grub superuser username makes password-guessing attacks less effective. | |
CM-6(a) | N/A | Set Boot Loader Password in grub2 |
The grub2 boot loader should have a superuser account and password
protection enabled to protect boot-time settings.
Since plaintext passwords are a security risk, generate a hash for the password by running the following command: # grub2-setpasswordWhen prompted, enter the password that was selected. |
Password protection on the boot loader configuration ensures users with physical access cannot trivially alter important bootloader settings. These include which kernel to use, and whether to enter single-user mode. | |
CM-6(a) | N/A | Set the UEFI Boot Loader Admin Username to a Non-Default Value |
The grub2 boot loader should have a superuser account and password
protection enabled to protect boot-time settings.
To maximize the protection, select a password-protected superuser account with unique name, and modify the /etc/grub.d/01_users configuration file to reflect the account name change. It is highly suggested not to use common administrator account names like root, admin, or administrator for the grub2 superuser account. Change the superuser to a different username (The default is 'root'). $ sed -i 's/\(set superusers=\).*/\1"<unique user ID>"/g' /etc/grub.d/01_users Once the superuser account has been added, update the grub.cfg file by running: grubby --update-kernel=ALL |
Having a non-default grub superuser username makes password-guessing attacks less effective. | |
CM-6(a) | N/A | Set the UEFI Boot Loader Password |
The grub2 boot loader should have a superuser account and password
protection enabled to protect boot-time settings.
Since plaintext passwords are a security risk, generate a hash for the password by running the following command: # grub2-setpasswordWhen prompted, enter the password that was selected. |
Password protection on the boot loader configuration ensures users with physical access cannot trivially alter important bootloader settings. These include which kernel to use, and whether to enter single-user mode. | |
CM-6(a) | N/A | Install Virus Scanning Software | Virus scanning software can be used to protect a system from penetration from computer viruses and to limit their spread through intermediate systems. The virus scanning software should be configured to perform scans dynamically on accessed files. If this capability is not available, the system must be configured to scan, at a minimum, all altered files on the system on a daily basis. If the system processes inbound SMTP mail, the virus scanner must be configured to scan all received mail. | Virus scanning software can be used to detect if a system has been compromised by computer viruses, as well as to limit their spread to other systems. | |
CM-6(a) | N/A | Install Smart Card Packages For Multifactor Authentication |
Configure the operating system to implement multifactor authentication by
installing the required package with the following command:
The pam_pkcs11 package can be installed with the following command:
$ sudo yum install pam_pkcs11 |
Using an authentication device, such as a CAC or token that is separate from
the information system, ensures that even if the information system is
compromised, that compromise will not affect credentials stored on the
authentication device.
Multifactor solutions that require devices separate from information systems gaining access include, for example, hardware tokens providing time-based or challenge-response authenticators and smart cards such as the U.S. Government Personal Identity Verification card and the DoD Common Access Card. |
|
CM-6(a) MA-6 SA-13(a) |
N/A | The Installed Operating System Is Vendor Supported | The installed operating system must be maintained by a vendor. Oracle Linux is supported by Oracle Corporation. As the Oracle Linux vendor, Oracle Corporation is responsible for providing security patches. | An operating system is considered "supported" if the vendor continues to provide security patches for the product. With an unsupported release, it will not be possible to resolve any security issue discovered in the system software. | |
AC-6 AC-6(8) AC-6(10) CM-6(a) |
N/A | Mount Remote Filesystems with noexec |
Add the noexec option to the fourth column of /etc/fstab for the line which controls mounting of
any NFS mounts.
|
The noexec mount option causes the system not to execute binary files. This option must be used for mounting any file system not containing approved binary files as they may be incompatible. Executing files from untrusted file systems increases the opportunity for unprivileged users to attain unauthorized administrative access. | |
AC-6 AC-6(1) CM6(a) |
N/A | Mount Remote Filesystems with nosuid |
Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of
any NFS mounts.
|
NFS mounts should not present suid binaries to users. Only vendor-supplied suid executables should be installed to their default location on the local filesystem. | |
CM-6 b CM-6.1(iv) |
N/A | Grant Or Deny System Access To Specific Hosts And Services |
To verify the system's access control program is configured
to grant or deny system access to specific hosts check to see
if "firewalld" is active with the following command:
# systemctl status firewalld firewalld.service - firewalld - dynamic firewall daemon Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled) Active: active (running) since Sun 2014-04-20 14:06:46 BST; 30s agoIf "firewalld" is active, check to see if it is configured to grant or deny access to specific hosts or services with the following commands: # firewall-cmd --get-default-zone public # firewall-cmd --list-all --zone=public public (active) target: default icmp-block-inversion: no interfaces: eth0 sources: services: mdns ssh ports: protocols: masquerade: no forward-ports: icmp-blocks:If "firewalld" is not active, determine whether "tcpwrappers" is being used by checking whether the "hosts.allow" and "hosts.deny" files are empty with the following commands: # ls -al /etc/hosts.allow rw-r----- 1 root root 9 Aug 2 23:13 /etc/hosts.allow # ls -al /etc/hosts.deny -rw-r----- 1 root root 9 Apr 9 2007 /etc/hosts.denyIf "firewalld" and "tcpwrappers" are not installed, configured, and active, ask the SA if another access control program (such as iptables) is installed and active. Ask the SA to show that the running configuration grants or denies access to specific hosts or services. If "firewalld" is active and is not configured to grant access to specific hosts or "tcpwrappers" is not configured to grant or deny access to specific hosts, this is a finding. |
If the systems access control program is not configured with appropriate rules for allowing and denying access to system network resources, services may be accessible to unauthorized hosts. | |
CM-6(b) CM-6.1(iv) |
N/A | Ensure There Are No Accounts With Blank or Null Passwords |
Check the "/etc/shadow" file for blank passwords with the
following command:
$ sudo awk -F: '!$2 {print $1}' /etc/shadowIf the command returns any results, this is a finding. Configure all accounts on the system to have a password or lock the account with the following commands: Perform a password reset: $ sudo passwd [username]Lock an account: $ sudo passwd -l [username] |
If an account has an empty password, anyone could log in and run commands with the privileges of that account. Accounts with empty passwords should never be used in operational environments. | |
CM-6(a) AC-6(1) |
N/A | Ensure All Files Are Owned by a User |
If any files are not owned by a user, then the cause of their lack of ownership should be
investigated. Following this, the files should be deleted or assigned to an appropriate user.
Locate the mount points related to local devices by the following command:
$ findmnt -n -l -k -it $(awk '/nodev/ { print $2 }' /proc/filesystems | paste -sd,)For all mount points listed by the previous command, it is necessary to search for files which do not belong to a valid user using the following command: $ sudo find MOUNTPOINT -xdev -nouser 2>/dev/null |
Unowned files do not directly imply a security problem, but they are generally a sign that something is amiss. They may be caused by an intruder, by incorrect software installation or draft software removal, or by failure to remove all files belonging to a deleted account, or other similar cases. The files should be repaired so they will not cause problems when accounts are created in the future, and the cause should be discovered and addressed. | |
CM-6(a) | N/A | Install AIDE |
The aide package can be installed with the following command:
$ sudo yum install aide |
The AIDE package must be installed if it is to be available for integrity checking. | |
CM-6(a) | N/A | Install firewalld Package |
The firewalld package can be installed with the following command:
$ sudo yum install firewalld |
"Firewalld" provides an easy and effective way to block/limit remote access to the system via ports, services, and protocols. Remote access services, such as those providing remote access to network devices and information systems, which lack automated control capabilities, increase risk and make remote user access management difficult at best. Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless. Oracle Linux 7 functionality (e.g., SSH) must be capable of taking enforcement action if the audit reveals unauthorized activity. Automated control of remote access sessions allows organizations to ensure ongoing compliance with remote access policies by enforcing connection rules of remote access applications on a variety of information system components (e.g., servers, workstations, notebook computers, smartphones, and tablets)." | |
CM-6(a) | N/A | Install the OpenSSH Server Package |
The openssh-server package should be installed.
The openssh-server package can be installed with the following command:
$ sudo yum install openssh-server |
Without protection of the transmitted information, confidentiality, and integrity may be compromised because unprotected communications can be intercepted and either read or altered. | |
CM-6(a) | N/A | Install the screen Package |
To enable console screen locking, install the screen package.
The screen package can be installed with the following command:
$ sudo yum install screenInstruct users to begin new terminal sessions with the following command: $ screenThe console can now be locked with the following key combination: ctrl+a x |
A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate
physical vicinity of the information system but does not logout because of the temporary nature of the absence.
Rather than relying on the user to manually lock their operation system session prior to vacating the vicinity,
operating systems need to be able to identify when a user's session has idled and take action to initiate the
session lock.
The screen package allows for a session lock to be implemented and configured. |
|
CM-6(a) SC-5(2) |
N/A | Ensure /home Located On Separate Partition | If user home directories will be stored locally, create a separate partition for /home at installation time (or migrate it later using LVM). If /home will be mounted from another system such as an NFS server, then creating a separate partition is not necessary at installation time, and the mountpoint can instead be configured later. | Ensuring that /home is mounted on its own partition enables the setting of more restrictive mount options, and also helps ensure that users cannot trivially fill partitions used for log or audit data storage. | |
CM-6(a) SC-5(2) |
N/A | Ensure /tmp Located On Separate Partition | The /tmp directory is a world-writable directory used for temporary file storage. Ensure it has its own partition or logical volume at installation time, or migrate it using LVM. | The /tmp partition is used as temporary storage by many programs. Placing /tmp in its own partition enables the setting of more restrictive mount options, which can help protect programs which use it. | |
CM-6(a) SC-5(2) |
N/A | Ensure /var Located On Separate Partition | The /var directory is used by daemons and other system services to store frequently-changing data. Ensure that /var has its own partition or logical volume at installation time, or migrate it using LVM. | Ensuring that /var is mounted on its own partition enables the setting of more restrictive mount options. This helps protect system services such as daemons or other programs which use it. It is not uncommon for the /var directory to contain world-writable directories installed by other software packages. | |
CM-6(a) AU-4 SC-5(2) |
N/A | Ensure /var/log/audit Located On Separate Partition |
Audit logs are stored in the /var/log/audit directory.
Ensure that /var/log/audit has its own partition or logical
volume at installation time, or migrate it using LVM.
Make absolutely certain that it is large enough to store all
audit logs that will be created by the auditing daemon.
|
Placing /var/log/audit in its own partition enables better separation between audit files and other files, and helps ensure that auditing cannot be halted due to the partition running out of space. | |
CM-6(d) CM-6(c) SI-7 SI-7(1) SI-7(6) AU-9(3) |
N/A | Verify File Hashes with RPM |
Without cryptographic integrity protections, system executables and files can be altered by
unauthorized users without detection. The RPM package management system can check the hashes
of installed software packages, including many that are important to system security.
To verify that the cryptographic hash of system files and commands matches vendor values, run
the following command to list which files on the system have hashes that differ from what is
expected by the RPM database:
$ rpm -Va --noconfig | grep '^..5'If the file was not expected to change, investigate the cause of the change using audit logs or other means. The package can then be reinstalled to restore the file. Run the following command to determine which package owns the file: $ rpm -qf FILENAMEThe package can be reinstalled from a yum repository using the command: $ sudo yum reinstall PACKAGENAMEAlternatively, the package can be reinstalled from trusted media using the command: $ sudo rpm -Uvh PACKAGENAME |
The hashes of important files like system executables should match the information given by the RPM database. Executables with erroneous hashes could be a sign of nefarious activity on the system. | |
CM-6(d) CM-6(c) SI-7 SI-7(1) SI-7(6) AU-9(3) |
N/A | Verify and Correct Ownership with RPM |
The RPM package management system can check file ownership permissions of installed software
packages, including many that are important to system security. After locating a file with
incorrect permissions, which can be found with:
rpm -Va | awk '{ if (substr($0,6,1)=="U" || substr($0,7,1)=="G") print $NF }'run the following command to determine which package owns it: $ rpm -qf FILENAMENext, run the following command to reset its permissions to the correct values: $ sudo rpm --restore PACKAGENAME |
Ownership of binaries and configuration files that is incorrect could allow an unauthorized user to gain privileges that they should not have. The ownership set by the vendor should be maintained. Any deviations from this baseline should be investigated. | |
CM-6(d) CM-6(c) SI-7 SI-7(1) SI-7(6) AU-9(3) CM-6(a) |
N/A | Verify and Correct File Permissions with RPM |
The RPM package management system can check file access permissions of installed software
packages, including many that are important to system security. Verify that the file
permissions of system files and commands match vendor values. Check the file permissions with
the following command:
$ sudo rpm -Va | awk '{ if (substr($0,2,1)=="M") print $NF }'Output indicates files that do not match vendor defaults. After locating a file with incorrect permissions, run the following command to determine which package owns it: $ rpm -qf FILENAME Next, run the following command to reset its permissions to the correct values: $ sudo rpm --restore PACKAGENAME |
Permissions on system binaries and configuration files that are too generous could allow an unauthorized user to gain privileges that they should not have. The permissions set by the vendor should be maintained. Any deviations from this baseline should be investigated. | |
CM-6(a) | N/A | Ensure cron Is Logging To Rsyslog |
Cron logging must be implemented to spot intrusions or trace
cron job status. If cron is not logging to rsyslog, it
can be implemented by adding the following to the RULES section of
/etc/rsyslog.conf:
If the legacy syntax is used:
cron.* /var/log/cronIf the modern syntax (RainerScript) is used: cron.* action(type="omfile" file="/var/log/cron") |
Cron logging can be used to trace the successful or unsuccessful execution of cron jobs. It can also be used to spot intrusions into the use of the cron facility by unauthorized and malicious users. | |
CM-6(a) AU-4(1) AU-9(2) |
N/A | Ensure Logs Sent To Remote Host |
To configure rsyslog to send logs to a remote log server,
open /etc/rsyslog.conf and read and understand the last section of the file,
which describes the multiple directives necessary to activate remote
logging.
Along with these other directives, the system can be configured
to forward its logs to a particular log server by
adding or correcting one of the following lines,
substituting logcollector appropriately.
The choice of protocol depends on the environment of the system;
although TCP and RELP provide more reliable message delivery,
they may not be supported in all environments.
To use UDP for log message delivery: *.* @logcollector To use TCP for log message delivery: *.* @@logcollector To use RELP for log message delivery: *.* :omrelp:logcollector There must be a resolvable DNS CNAME or Alias record set to "logcollector" for logs to be sent correctly to the centralized logging utility. |
A log server (loghost) receives syslog messages from one or more systems. This data can be used as an additional log source in the event a system is compromised and its local logs are suspect. Forwarding log messages to a remote loghost also provides system administrators with a centralized place to view the status of multiple hosts within the enterprise. | rsyslog_remote_loghost_address=logcollector |
CM-6(a) SC-8 SC-8(1) SC-8(2) SC-8(3) SC-8(4) |
N/A | Enable the OpenSSH Service |
The SSH server service, sshd, is commonly needed.
The sshd service can be enabled with the following command:
$ sudo systemctl enable sshd.service |
Without protection of the transmitted information, confidentiality, and
integrity may be compromised because unprotected communications can be
intercepted and either read or altered.
This checklist item applies to both internal and external networks and all types of information system components from which information can be transmitted (e.g., servers, mobile devices, notebook computers, printers, copiers, scanners, etc). Communication paths outside the physical protection of a controlled boundary are exposed to the possibility of interception and modification. |
|
CM-6(a) AC-17(a) AC-17(2) IA-5(1)(c) SC-13 MA-4(6) |
N/A | Allow Only SSH Protocol 2 |
Only SSH protocol version 2 connections should be
permitted. The default setting in
/etc/ssh/sshd_config is correct, and can be
verified by ensuring that the following
line appears:
Protocol 2 |
SSH protocol version 1 is an insecure implementation of the SSH protocol and has many well-known vulnerability exploits. Exploits of the SSH daemon could provide immediate root access to the system. | |
CM-6(b) | N/A | Disable X11 Forwarding |
The X11Forwarding parameter provides the ability to tunnel X11 traffic
through the connection to enable remote graphic connections.
SSH has the capability to encrypt remote X11 connections when SSH's
X11Forwarding option is enabled.
The default SSH configuration disables X11Forwarding. The appropriate configuration is used if no value is set for X11Forwarding. To explicitly disable X11 Forwarding, add or correct the following line in /etc/ssh/sshd_config: X11Forwarding no |
Disable X11 forwarding unless there is an operational requirement to use X11 applications directly. There is a small risk that the remote X11 servers of users who are logged in via SSH with X11 forwarding could be compromised by other users on the X11 server. Note that even if X11 forwarding is disabled, users can always install their own forwarders. | |
AC-6 AC-17(a) CM-6(a) |
N/A | Enable Use of Strict Mode Checking |
SSHs StrictModes option checks file and ownership permissions in
the user's home directory .ssh folder before accepting login. If world-
writable permissions are found, logon is rejected.
The default SSH configuration has StrictModes enabled. The appropriate configuration is used if no value is set for StrictModes. To explicitly enable StrictModes in SSH, add or correct the following line in /etc/ssh/sshd_config: StrictModes yes |
If other users have access to modify user-specific SSH configuration files, they may be able to log into the system as another user. | |
CM-6(a) AC-17(a) AC-2(5) AC-12 AC-17(a) SC-10 CM-6(a) |
N/A | Set SSH Client Alive Interval |
SSH allows administrators to set a network responsiveness timeout interval.
After this interval has passed, the unresponsive client will be automatically logged out.
To set this timeout interval, edit the following line in /etc/ssh/sshd_config as follows: ClientAliveInterval 10_minutes The timeout interval is given in seconds. For example, have a timeout of 10 minutes, set interval to 600. If a shorter timeout has already been set for the login shell, that value will preempt any SSH setting made in /etc/ssh/sshd_config. Keep in mind that some processes may stop SSH from correctly detecting that the user is idle. |
Terminating an idle ssh session within a short time period reduces the window of opportunity for unauthorized personnel to take control of a management session enabled on the console or console port that has been let unattended. | sshd_idle_timeout_value=10_minutes |
CM-6(a) AC-17(a) AC-6 |
N/A | Enable Use of Privilege Separation |
When enabled, SSH will create an unprivileged child process that
has the privilege of the authenticated user. To enable privilege separation in
SSH, add or correct the following line in the /etc/ssh/sshd_config file:
UsePrivilegeSeparation sandbox |
SSH daemon privilege separation causes the SSH process to drop root privileges when not needed which would decrease the impact of software vulnerabilities in the unprivileged section. | var_sshd_priv_separation=sandbox |
CM-6(b) | N/A | Prevent remote hosts from connecting to the proxy display |
The SSH daemon should prevent remote hosts from connecting to the proxy
display.
The default SSH configuration for X11UseLocalhost is yes, which prevents remote hosts from connecting to the proxy display. To explicitly prevent remote connections to the proxy display, add or correct the following line in /etc/ssh/sshd_config: X11UseLocalhost yes |
When X11 forwarding is enabled, there may be additional exposure to the server and client displays if the sshd proxy display is configured to listen on the wildcard address. By default, sshd binds the forwarding server to the loopback address and sets the hostname part of the DISPLAY environment variable to localhost. This prevents remote hosts from connecting to the proxy display. | |
CM-6(b) CM-6(iv) |
N/A | The operating system must restrict privilege elevation to authorized personnel | The sudo command allows a user to execute programs with elevated (administrator) privileges. It prompts the user for their password and confirms your request to execute a command by checking a file, called sudoers. Restrict privileged actions by removing the following entries from the sudoers file: ALL ALL=(ALL) ALL ALL ALL=(ALL:ALL) ALL | If the "sudoers" file is not configured correctly, any user defined on the system can initiate privileged actions on the target system. | |
CM-6(b) CM-6.1(iv) |
N/A | Ensure invoking users password for privilege escalation when using sudo |
The sudoers security policy requires that users authenticate themselves before they can use sudo.
When sudoers requires authentication, it validates the invoking user's credentials.
The expected output for:
sudo cvtsudoers -f sudoers /etc/sudoers | grep -E '^Defaults !?(rootpw|targetpw|runaspw)$' Defaults !targetpw Defaults !rootpw Defaults !runaspwor if cvtsudoers not supported: sudo find /etc/sudoers /etc/sudoers.d \( \! -name '*~' -a \! -name '*.*' \) -exec grep -E --with-filename '^[[:blank:]]*Defaults[[:blank:]](.*[[:blank:]])?!?\b(rootpw|targetpw|runaspw)' -- {} \; /etc/sudoers:Defaults !targetpw /etc/sudoers:Defaults !rootpw /etc/sudoers:Defaults !runaspw |
If the rootpw, targetpw, or runaspw flags are defined and not disabled, by default the operating system will prompt the invoking user for the "root" user password. | |
CM-6(b) AC-6 CM-7(a) |
N/A | Ensure tftp Daemon Uses Secure Mode |
If running the Trivial File Transfer Protocol (TFTP) service is necessary,
it should be configured to change its root directory at startup. To do so,
ensure /etc/xinetd.d/tftp includes -s as a command line argument,
as shown in the following example:
server_args = -s /var/lib/tftpboot |
Using the -s option causes the TFTP service to only serve files from the given directory. Serving files from an intentionally-specified directory reduces the risk of sharing files which should remain private. | var_tftpd_secure_directory=/var/lib/tftpboot |
CM-6(b) | N/A | Disable graphical user interface |
By removing the following packages, the system no longer has X Windows installed.
xorg-x11-server-Xorg xorg-x11-server-common xorg-x11-server-utils
If X Windows is not installed then the system cannot boot into graphical user mode.
This prevents the system from being accidentally or maliciously booted into a graphical.target
mode. To do so, run the following command:
sudo yum remove xorg-x11-server-Xorg xorg-x11-server-common xorg-x11-server-utils |
Unnecessary service packages must not be installed to decrease the attack surface of the system. X windows has a long history of security vulnerabilities and should not be installed unless approved and documented. | |
AC-6(1) CM-6(a) |
N/A | Ensure the Default Umask is Set Correctly in login.defs |
To ensure the default umask controlled by /etc/login.defs is set properly,
add or correct the UMASK setting in /etc/login.defs to read as follows:
UMASK 077 |
The umask value influences the permissions assigned to files when they are created. A misconfigured umask value could result in files with excessive permissions that can be read and written to by unauthorized users. | var_accounts_user_umask=077 |
AC-6(2) AC-17(a) IA-2 IA-2(5) CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable SSH Root Login |
The root user should never be allowed to login to a
system directly over a network.
To disable root login via SSH, add or correct the following line in
/etc/ssh/sshd_config:
PermitRootLogin no |
Even though the communications channel may be encrypted, an additional layer of security is gained by extending the policy of not logging directly on as root. In addition, logging in with a user-specific account provides individual accountability of actions performed on the system and also helps to minimize direct attack attempts on root's password. | |
AC-7(b) CM-6(a) |
N/A | Ensure the Logon Failure Delay is Set Correctly in login.defs |
To ensure the logon failure delay controlled by /etc/login.defs is set properly,
add or correct the FAIL_DELAY setting in /etc/login.defs to read as follows:
FAIL_DELAY 4 |
Increasing the time between a failed authentication attempt and re-prompting to enter credentials helps to slow a single-threaded brute force attack. | var_accounts_fail_delay=4 |
SI-7 SI-7(1) CM-6(a) |
N/A | Configure Periodic Execution of AIDE |
At a minimum, AIDE should be configured to run a weekly scan.
To implement a daily execution of AIDE at 4:05am using cron, add the following line to /etc/crontab:
05 4 * * * root /usr/sbin/aide --checkTo implement a weekly execution of AIDE at 4:05am using cron, add the following line to /etc/crontab: 05 4 * * 0 root /usr/sbin/aide --checkAIDE can be executed periodically through other means; this is merely one example. The usage of cron's special time codes, such as @daily and @weekly is acceptable. |
By default, AIDE does not install itself for periodic execution. Periodically
running AIDE is necessary to reveal unexpected changes in installed files.
Unauthorized changes to the baseline configuration could make the system vulnerable to various attacks or allow unauthorized access to the operating system. Changes to operating system configurations can have unintended side effects, some of which may be relevant to security. Detecting such changes and providing an automated response can help avoid unintended, negative consequences that could ultimately affect the security state of the operating system. The operating system's Information Management Officer (IMO)/Information System Security Officer (ISSO) and System Administrators (SAs) must be notified via email and/or monitoring system trap when there is an unauthorized modification of a configuration item. |
|
SI-7 SI-7(1) CM-6(a) |
N/A | Configure AIDE to Use FIPS 140-2 for Validating Hashes |
By default, the sha512 option is added to the NORMAL ruleset in AIDE.
If using a custom ruleset or the sha512 option is missing, add sha512
to the appropriate ruleset.
For example, add sha512 to the following line in /etc/aide.conf:
NORMAL = FIPSR+sha512AIDE rules can be configured in multiple ways; this is merely one example that is already configured by default. |
File integrity tools use cryptographic hashes for verifying file contents and directories have not been altered. These hashes must be FIPS 140-2 approved cryptographic hashes. | |
SI-7 SI-7(1) CM-6(a) |
N/A | Configure AIDE to Verify Access Control Lists (ACLs) |
By default, the acl option is added to the FIPSR ruleset in AIDE.
If using a custom ruleset or the acl option is missing, add acl
to the appropriate ruleset.
For example, add acl to the following line in /etc/aide.conf:
FIPSR = p+i+n+u+g+s+m+c+acl+selinux+xattrs+sha256AIDE rules can be configured in multiple ways; this is merely one example that is already configured by default. The remediation provided with this rule adds acl to all rule sets available in /etc/aide.conf |
ACLs can provide permissions beyond those permitted through the file mode and must be verified by the file integrity tools. | |
SI-7 SI-7(1) CM-6(a) |
N/A | Configure AIDE to Verify Extended Attributes |
By default, the xattrs option is added to the FIPSR ruleset in AIDE.
If using a custom ruleset or the xattrs option is missing, add xattrs
to the appropriate ruleset.
For example, add xattrs to the following line in /etc/aide.conf:
FIPSR = p+i+n+u+g+s+m+c+acl+selinux+xattrs+sha256AIDE rules can be configured in multiple ways; this is merely one example that is already configured by default. The remediation provided with this rule adds xattrs to all rule sets available in /etc/aide.conf |
Extended attributes in file systems are used to contain arbitrary data and file metadata with security implications. | |
CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable GNOME3 Automounting |
The system's default desktop environment, GNOME3, will mount
devices and removable media (such as DVDs, CDs and USB flash drives) whenever
they are inserted into the system. To disable automount within GNOME3, add or set
automount to false in /etc/dconf/db/local.d/00-security-settings.
For example:
[org/gnome/desktop/media-handling] automount=falseOnce the settings have been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/desktop/media-handling/automountAfter the settings have been set, run dconf update. |
Disabling automatic mounting in GNOME3 can prevent the introduction of malware via removable media. It will, however, also prevent desktop users from legitimate use of removable media. | |
CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable GNOME3 Automount Opening |
The system's default desktop environment, GNOME3, will mount
devices and removable media (such as DVDs, CDs and USB flash drives) whenever
they are inserted into the system. To disable automount-open within GNOME3, add or set
automount-open to false in /etc/dconf/db/local.d/00-security-settings.
For example:
[org/gnome/desktop/media-handling] automount-open=falseOnce the settings have been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/desktop/media-handling/automount-openAfter the settings have been set, run dconf update. |
Automatically mounting file systems permits easy introduction of unknown devices, thereby facilitating malicious activity. Disabling automatic mounting in GNOME3 can prevent the introduction of malware via removable media. It will, however, also prevent desktop users from legitimate use of removable media. | |
CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable GNOME3 Automount running |
The system's default desktop environment, GNOME3, will mount
devices and removable media (such as DVDs, CDs and USB flash drives) whenever
they are inserted into the system. To disable autorun-never within GNOME3, add or set
autorun-never to true in /etc/dconf/db/local.d/00-security-settings.
For example:
[org/gnome/desktop/media-handling] autorun-never=trueOnce the settings have been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/desktop/media-handling/autorun-neverAfter the settings have been set, run dconf update. |
Automatically mounting file systems permits easy introduction of unknown devices, thereby facilitating malicious activity. Disabling automatic mount running in GNOME3 can prevent the introduction of malware via removable media. It will, however, also prevent desktop users from legitimate use of removable media. | |
CM-7(a) CM-7(b) CM-6(a) IA-2 |
N/A | Disable GDM Guest Login |
The GNOME Display Manager (GDM) can allow users to login without credentials
which can be useful for public kiosk scenarios. Allowing users to login without credentials
or "guest" account access has inherent security risks and should be disabled. To do disable
timed logins or guest account access, set the TimedLoginEnable to false in
the [daemon] section in /etc/gdm/custom.conf. For example:
[daemon] TimedLoginEnable=false |
Failure to restrict system access to authenticated users negatively impacts operating system security. | |
CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable DCCP Support |
The Datagram Congestion Control Protocol (DCCP) is a
relatively new transport layer protocol, designed to support
streaming media and telephony.
To configure the system to prevent the dccp
kernel module from being loaded, add the following line to the file /etc/modprobe.d/dccp.conf :
install dccp /bin/falseTo configure the system to prevent the dccp from being used,
add the following line to file /etc/modprobe.d/dccp.conf :
blacklist dccp |
Disabling DCCP protects the system against exploitation of any flaws in its implementation. | |
CM-7(a) CM-7(b) CM-6(a) MP-7 |
N/A | Disable Modprobe Loading of USB Storage Driver |
To prevent USB storage devices from being used, configure the kernel module loading system
to prevent automatic loading of the USB storage driver.
To configure the system to prevent the usb-storage
kernel module from being loaded, add the following line to the file /etc/modprobe.d/usb-storage.conf :
install usb-storage /bin/falseTo configure the system to prevent the usb-storage from being used,
add the following line to file /etc/modprobe.d/usb-storage.conf :
blacklist usb-storageThis will prevent the modprobe program from loading the usb-storage module, but will not prevent an administrator (or another program) from using the insmod program to load the module manually. |
USB storage devices such as thumb drives can be used to introduce malicious software. | |
CM-7(a) CM-7(b) CM-6(a) AC-6 AC-6(1) MP-7 |
N/A | Add nodev Option to /dev/shm |
The nodev mount option can be used to prevent creation of device
files in /dev/shm. Legitimate character and block devices should
not exist within temporary directories like /dev/shm.
Add the nodev option to the fourth column of
/etc/fstab for the line which controls mounting of
/dev/shm .
|
The only legitimate location for device files is the /dev directory located on the root partition. The only exception to this is chroot jails. | |
CM-7(a) CM-7(b) CM-6(a) AC-6 AC-6(1) MP-7 |
N/A | Add noexec Option to /dev/shm |
The noexec mount option can be used to prevent binaries
from being executed out of /dev/shm.
It can be dangerous to allow the execution of binaries
from world-writable temporary storage directories such as /dev/shm.
Add the noexec option to the fourth column of
/etc/fstab for the line which controls mounting of
/dev/shm .
|
Allowing users to execute binaries from world-writable directories such as /dev/shm can expose the system to potential compromise. | |
CM-7(a) CM-7(b) CM-6(a) AC-6 AC-6(1) MP-7 |
N/A | Add nosuid Option to /dev/shm |
The nosuid mount option can be used to prevent execution
of setuid programs in /dev/shm. The SUID and SGID permissions should not
be required in these world-writable directories.
Add the nosuid option to the fourth column of
/etc/fstab for the line which controls mounting of
/dev/shm .
|
The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from temporary storage partitions. | |
CM-7(a) CM-7(b) CM-6(a) AC-6 AC-6(1) MP-7 |
N/A | Add nosuid Option to /home |
The nosuid mount option can be used to prevent
execution of setuid programs in /home. The SUID and SGID permissions
should not be required in these user data directories.
Add the nosuid option to the fourth column of
/etc/fstab for the line which controls mounting of
/home .
|
The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from user home directory partitions. | |
CM-7(a) CM-7(b) CM-6(a) IA-2 IA-2(8) IA-2(9) AC-17(a) |
N/A | Mount Remote Filesystems with Kerberos Security |
Add the sec=krb5:krb5i:krb5p option to the fourth column of /etc/fstab for the line which controls mounting of
any NFS mounts.
|
When an NFS server is configured to use AUTH_SYS a selected userid and groupid are used to handle requests from the remote user. The userid and groupid could mistakenly or maliciously be set incorrectly. The AUTH_GSS method of authentication uses certificates on the server and client systems to more securely authenticate the remote mount request. | |
CM-7(a) CM-7(b) CM-6(a) AC-6 AC-6(1) MP-7 |
N/A | Add nosuid Option to Removable Media Partitions |
The nosuid mount option prevents set-user-identifier (SUID)
and set-group-identifier (SGID) permissions from taking effect. These permissions
allow users to execute binaries with the same permissions as the owner and group
of the file respectively. Users should not be allowed to introduce SUID and SGID
files into the system via partitions mounted from removeable media.
Add the nosuid option to the fourth column of
/etc/fstab for the line which controls mounting of
any removable media partitions.
|
The presence of SUID and SGID executables should be tightly controlled. Allowing users to introduce SUID or SGID binaries from partitions mounted off of removable media would allow them to introduce their own highly-privileged programs. | |
CM-7(a) CM-7(b) CM-6(a) CM-7(2) MA-3 |
N/A | Ensure System is Not Acting as a Network Sniffer |
The system should not be acting as a network sniffer, which can
capture all traffic on the network to which it is connected. Run the following
to determine if any interface is running in promiscuous mode:
$ ip link | grep PROMISCPromiscuous mode of an interface can be disabled with the following command: $ sudo ip link set dev device_name multicast off promisc off |
Network interfaces in promiscuous mode allow for the capture of all network traffic
visible to the system. If unauthorized individuals can access these applications, it
may allow them to collect information such as logon IDs, passwords, and key exchanges
between systems.
If the system is being used to perform a network troubleshooting function, the use of these tools must be documented with the Information Systems Security Manager (ISSM) and restricted to only authorized personnel. |
|
CM-7(a) CM-7(b) CM-6(a) IA-5(1)(c) |
N/A | Uninstall rsh-server Package |
The rsh-server package can be removed with the following command:
$ sudo yum erase rsh-server |
The rsh-server service provides unencrypted remote access service which does not provide for the confidentiality and integrity of user passwords or the remote session and has very weak authentication. If a privileged user were to login using this service, the privileged user password could be compromised. The rsh-server package provides several obsolete and insecure network services. Removing it decreases the risk of those services' accidental (or intentional) activation. | |
CM-7(a) CM-7(b) CM-6(a) |
N/A | Uninstall telnet-server Package |
The telnet-server package can be removed with the following command:
$ sudo yum erase telnet-server |
It is detrimental for operating systems to provide, or install by default,
functionality exceeding requirements or mission objectives. These
unnecessary capabilities are often overlooked and therefore may remain
unsecure. They increase the risk to the platform by providing additional
attack vectors.
The telnet service provides an unencrypted remote access service which does not provide for the confidentiality and integrity of user passwords or the remote session. If a privileged user were to login using this service, the privileged user password could be compromised. Removing the telnet-server package decreases the risk of the telnet service's accidental (or intentional) activation. |
|
CM-7(a) CM-7(b) CM-6(a) |
N/A | Uninstall tftp-server Package |
The tftp-server package can be removed with the following command: $ sudo yum erase tftp-server |
Removing the tftp-server package decreases the risk of the accidental
(or intentional) activation of tftp services.
If TFTP is required for operational support (such as transmission of router configurations), its use must be documented with the Information Systems Securty Manager (ISSM), restricted to only authorized personnel, and have access control rules established. |
|
CM-7(a) CM-7(b) CM-6(a) IA-5(1)(c) IA-5(1).1(v) CM-7 CM-7.1(ii) |
N/A | Uninstall vsftpd Package |
The vsftpd package can be removed with the following command: $ sudo yum erase vsftpd |
Removing the vsftpd package decreases the risk of its accidental activation. | |
CM-7(a) CM-7(b) CM-6(a) IA-5(1)(c) |
N/A | Uninstall ypserv Package |
The ypserv package can be removed with the following command:
$ sudo yum erase ypserv |
The NIS service provides an unencrypted authentication service which does not provide for the confidentiality and integrity of user passwords or the remote session. Removing the ypserv package decreases the risk of the accidental (or intentional) activation of NIS or NIS+ services. | |
CM-7(a) CM-7(b) CM-6(a) |
N/A | Ensure rsyslog Does Not Accept Remote Messages Unless Acting As Log Server |
The rsyslog daemon should not accept remote messages unless the system acts as a log
server. To ensure that it is not listening on the network, ensure any of the following lines
are not found in rsyslog configuration files.
If using legacy syntax:
$ModLoad imtcp $InputTCPServerRun port $ModLoad imudp $UDPServerRun port $ModLoad imrelp $InputRELPServerRun portIf using RainerScript syntax: module(load="imtcp") module(load="imudp") input(type="imtcp" port="514") input(type="imudp" port="514") |
Any process which receives messages from the network incurs some risk of receiving malicious messages. This risk can be eliminated for rsyslog by configuring it not to listen on the network. | |
CM-7(a) CM-7(b) CM-6(a) AC-3(3)(a) AC-6 |
N/A | Ensure No Device Files are Unlabeled by SELinux |
Device files, which are used for communication with important system
resources, should be labeled with proper SELinux types. If any device files
carry the SELinux type device_t or unlabeled_t, report the
bug so that policy can be corrected. Supply information about what the
device is and what programs use it.
To check for incorrectly labeled device files, run following commands: $ sudo find /dev -context *:device_t:* \( -type c -o -type b \) -printf "%p %Z\n" $ sudo find /dev -context *:unlabeled_t:* \( -type c -o -type b \) -printf "%p %Z\n"It should produce no output in a well-configured system. |
If a device file carries the SELinux type device_t or unlabeled_t, then SELinux cannot properly restrict access to the device file. | |
CM-7(a) CM-7(b) CM-6(a) MP-7 |
N/A | Disable the Automounter |
The autofs daemon mounts and unmounts filesystems, such as user
home directories shared via NFS, on demand. In addition, autofs can be used to handle
removable media, and the default configuration provides the cdrom device as /misc/cd.
However, this method of providing access to removable media is not common, so autofs
can almost always be disabled if NFS is not in use. Even if NFS is required, it may be
possible to configure filesystem mounts statically by editing /etc/fstab
rather than relying on the automounter.
The autofs service can be disabled with the following command:
$ sudo systemctl mask --now autofs.service |
Disabling the automounter permits the administrator to
statically control filesystem mounting through /etc/fstab.
Additionally, automatically mounting filesystems permits easy introduction of unknown devices, thereby facilitating malicious activity. |
|
CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable KDump Kernel Crash Analyzer (kdump) |
The kdump service provides a kernel crash dump analyzer. It uses the kexec
system call to boot a secondary kernel ("capture" kernel) following a system
crash, which can load information from the crashed kernel for analysis.
The kdump service can be disabled with the following command:
$ sudo systemctl mask --now kdump.service |
Kernel core dumps may contain the full contents of system memory at the time of the crash. Kernel core dumps consume a considerable amount of disk space and may result in denial of service by exhausting the available space on the target file system partition. Unless the system is used for kernel development or testing, there is little need to run the kdump service. | |
CM-7(a) CM-7(b) CM-6(a) AC-17(a) |
N/A | Disable GSSAPI Authentication |
Unless needed, SSH should not permit extraneous or unnecessary
authentication mechanisms like GSSAPI.
The default SSH configuration disallows authentications based on GSSAPI. The appropriate configuration is used if no value is set for GSSAPIAuthentication. To explicitly disable GSSAPI authentication, add or correct the following line in /etc/ssh/sshd_config: GSSAPIAuthentication no |
GSSAPI authentication is used to provide additional authentication mechanisms to applications. Allowing GSSAPI authentication through SSH exposes the system's GSSAPI to remote hosts, increasing the attack surface of the system. | |
CM-7(a) CM-7(b) CM-6(a) |
N/A | Configure SSSD LDAP Backend to Use TLS For All Transactions |
The LDAP client should be configured to implement TLS for the integrity
of all remote LDAP authentication sessions. If the id_provider is
set to ldap or ipa in /etc/sssd/sssd.conf or any of the
/etc/sssd/sssd.conf.d configuration files, ldap_id_use_start_tls
must be set to true.
To check if LDAP is configured to use TLS when id_provider is set to ldap or ipa, use the following command: $ sudo grep -i ldap_id_use_start_tls /etc/sssd/sssd.conf /etc/sssd/conf.d/*.conf |
Without cryptographic integrity protections, information can be altered by unauthorized users without detection. The ssl directive specifies whether to use TLS or not. If not specified it will default to no. It should be set to start_tls rather than doing LDAP over SSL. | |
CM-7(a) CM-7(b) CM-6(a) SC-7(a) |
N/A | Disable Accepting ICMP Redirects for All IPv4 Interfaces |
To set the runtime status of the net.ipv4.conf.all.accept_redirects kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.all.accept_redirects=0To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.conf.all.accept_redirects = 0 |
ICMP redirect messages are used by routers to inform hosts that a more
direct route exists for a particular destination. These messages modify the
host's route table and are unauthenticated. An illicit ICMP redirect
message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required." |
|
CM-7(a) CM-7(b) SC-5 CM-6(a) SC-7(a) |
N/A | Disable Kernel Parameter for Accepting Source-Routed Packets on all IPv4 Interfaces |
To set the runtime status of the net.ipv4.conf.all.accept_source_route kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.all.accept_source_route=0To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.conf.all.accept_source_route = 0 |
Source-routed packets allow the source of the packet to suggest routers
forward the packet along a different path than configured on the router,
which can be used to bypass network security measures. This requirement
applies only to the forwarding of source-routerd traffic, such as when IPv4
forwarding is enabled and the system is functioning as a router.
Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required. |
|
CM-7(a) CM-7(b) CM-6(a) SC-7(a) |
N/A | Enable Kernel Parameter to Use Reverse Path Filtering on all IPv4 Interfaces |
To set the runtime status of the net.ipv4.conf.all.rp_filter kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.all.rp_filter=1To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.conf.all.rp_filter = 1 |
Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks. | |
CM-7(a) CM-7(b) SC-5 CM-6(a) SC-7(a) |
N/A | Disable Kernel Parameter for Sending ICMP Redirects on all IPv4 Interfaces |
To set the runtime status of the net.ipv4.conf.all.send_redirects kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.all.send_redirects=0To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.conf.all.send_redirects = 0 |
ICMP redirect messages are used by routers to inform hosts that a more
direct route exists for a particular destination. These messages contain information
from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers. |
|
CM-7(a) CM-7(b) CM-6(a) SC-7(a) |
N/A | Disable Kernel Parameter for Accepting ICMP Redirects by Default on IPv4 Interfaces |
To set the runtime status of the net.ipv4.conf.default.accept_redirects kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.default.accept_redirects=0To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.conf.default.accept_redirects = 0 |
ICMP redirect messages are used by routers to inform hosts that a more
direct route exists for a particular destination. These messages modify the
host's route table and are unauthenticated. An illicit ICMP redirect
message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required. |
|
CM-7(a) CM-7(b) SC-5 SC-7(a) |
N/A | Disable Kernel Parameter for Accepting Source-Routed Packets on IPv4 Interfaces by Default |
To set the runtime status of the net.ipv4.conf.default.accept_source_route kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.default.accept_source_route=0To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.conf.default.accept_source_route = 0 |
Source-routed packets allow the source of the packet to suggest routers
forward the packet along a different path than configured on the router,
which can be used to bypass network security measures.
Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required, such as when IPv4 forwarding is enabled and the system is legitimately functioning as a router. |
|
CM-7(a) CM-7(b) CM-6(a) SC-7(a) |
N/A | Enable Kernel Parameter to Use Reverse Path Filtering on all IPv4 Interfaces by Default |
To set the runtime status of the net.ipv4.conf.default.rp_filter kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.default.rp_filter=1To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.conf.default.rp_filter = 1 |
Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks. | |
CM-7(a) CM-7(b) SC-5 CM-6(a) SC-7(a) |
N/A | Disable Kernel Parameter for Sending ICMP Redirects on all IPv4 Interfaces by Default |
To set the runtime status of the net.ipv4.conf.default.send_redirects kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.default.send_redirects=0To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.conf.default.send_redirects = 0 |
ICMP redirect messages are used by routers to inform hosts that a more
direct route exists for a particular destination. These messages contain information
from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers. |
|
CM-7(a) CM-7(b) SC-5 |
N/A | Enable Kernel Parameter to Ignore ICMP Broadcast Echo Requests on IPv4 Interfaces |
To set the runtime status of the net.ipv4.icmp_echo_ignore_broadcasts kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.icmp_echo_ignore_broadcasts = 1 |
Responding to broadcast (ICMP) echoes facilitates network mapping
and provides a vector for amplification attacks.
Ignoring ICMP echo requests (pings) sent to broadcast or multicast addresses makes the system slightly more difficult to enumerate on the network. |
|
CM-7(a) CM-7(b) SC-5 CM-6(a) SC-7(a) |
N/A | Disable Kernel Parameter for IP Forwarding on IPv4 Interfaces |
To set the runtime status of the net.ipv4.ip_forward kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.ip_forward=0To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv4.ip_forward = 0 |
Routing protocol daemons are typically used on routers to exchange network topology information with other routers. If this capability is used when not required, system network information may be unnecessarily transmitted across the network. | |
CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable Kernel Parameter for Accepting Source-Routed Packets on all IPv6 Interfaces |
To set the runtime status of the net.ipv6.conf.all.accept_source_route kernel parameter, run the following command: $ sudo sysctl -w net.ipv6.conf.all.accept_source_route=0To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: net.ipv6.conf.all.accept_source_route = 0 |
Source-routed packets allow the source of the packet to suggest routers
forward the packet along a different path than configured on the router, which can
be used to bypass network security measures. This requirement applies only to the
forwarding of source-routerd traffic, such as when IPv6 forwarding is enabled and
the system is functioning as a router.
Accepting source-routed packets in the IPv6 protocol has few legitimate uses. It should be disabled unless it is absolutely required. |
|
AC-8(a) AC-8(c) |
N/A | Modify the System Login Banner |
To configure the system login banner edit /etc/issue. Replace the
default text with a message compliant with the local site policy or a legal
disclaimer.
The DoD required text is either:
You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only. By using this IS (which includes any device attached to this IS), you consent to the following conditions: -The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations. -At any time, the USG may inspect and seize data stored on this IS. -Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose. -This IS includes security measures (e.g., authentication and access controls) to protect USG interests -- not for your personal benefit or privacy. -Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details. OR: I've read & consent to terms in IS user agreem't. |
Display of a standardized and approved use notification before granting
access to the operating system ensures privacy and security notification
verbiage used is consistent with applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.
System use notifications are required only for access via login interfaces with human users and are not required when such human interfaces do not exist. |
|
AC-8(a) AC-8(b) AC-8(c) |
N/A | Enable GNOME3 Login Warning Banner |
In the default graphical environment, displaying a login warning banner
in the GNOME Display Manager's login screen can be enabled on the login
screen by setting banner-message-enable to true.
To enable, add or edit banner-message-enable to /etc/dconf/db/local.d/00-security-settings. For example: [org/gnome/login-screen] banner-message-enable=trueOnce the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/login-screen/banner-message-enableAfter the settings have been set, run dconf update. The banner text must also be set. |
Display of a standardized and approved use notification before granting access to the operating system
ensures privacy and security notification verbiage used is consistent with applicable federal laws,
Executive Orders, directives, policies, regulations, standards, and guidance.
For U.S. Government systems, system use notifications are required only for access via login interfaces with human users and are not required when such human interfaces do not exist. |
|
AC-8(a) AC-8(c) |
N/A | Set the GNOME3 Login Warning Banner Text |
In the default graphical environment, configuring the login warning banner text
in the GNOME Display Manager's login screen can be configured on the login
screen by setting banner-message-text to 'APPROVED_BANNER'
where APPROVED_BANNER is the approved banner for your environment.
To enable, add or edit banner-message-text to /etc/dconf/db/local.d/00-security-settings. For example: [org/gnome/login-screen] banner-message-text='APPROVED_BANNER'Once the setting has been added, add a lock to /etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification. For example: /org/gnome/login-screen/banner-message-textAfter the settings have been set, run dconf update. When entering a warning banner that spans several lines, remember to begin and end the string with ' and use \n for new lines. |
An appropriate warning message reinforces policy awareness during the logon process and facilitates possible legal action against attackers. | |
AC-8(a) AC-8(c) AC-17(a) CM-6(a) |
N/A | Enable SSH Warning Banner |
To enable the warning banner and ensure it is consistent
across the system, add or correct the following line in
/etc/ssh/sshd_config:
Banner /etc/issueAnother section contains information on how to create an appropriate system-wide warning banner. |
The warning message reinforces policy awareness during the logon process and facilitates possible legal action against attackers. Alternatively, systems whose ownership should not be obvious should ensure usage of a banner that does not provide easy attribution. | |
AC-9 AC-9(1) |
N/A | Ensure PAM Displays Last Logon/Access Notification |
To configure the system to notify users of last logon/access using pam_lastlog,
add or correct the pam_lastlog settings in /etc/pam.d/postlogin
to include showfailed option, such as:
session required pam_lastlog.so showfailedAnd make sure that the silent option is not set for this specific line. |
Users need to be aware of activity that occurs regarding their account. Providing users with information regarding the number of unsuccessful attempts that were made to login to their account allows the user to determine if any unauthorized activity has occurred and gives them an opportunity to notify administrators. | |
AC-9 AC-9(1) |
N/A | Enable SSH Print Last Log |
Ensure that SSH will display the date and time of the last successful account logon.
The default SSH configuration enables print of the date and time of the last login. The appropriate configuration is used if no value is set for PrintLastLog. To explicitly enable LastLog in SSH, add or correct the following line in /etc/ssh/sshd_config: PrintLastLog yes |
Providing users feedback on when account accesses last occurred facilitates user recognition and reporting of unauthorized account use. | |
AU-9(3) CM-6(a) |
N/A | Encrypt Audit Records Sent With audispd Plugin |
Configure the operating system to encrypt the transfer of off-loaded audit
records onto a different system or media from the system being audited.
Uncomment the enable_krb5 option in /etc/audisp/audisp-remote.conf, and set it with the following line: enable_krb5 = yes |
Information stored in one location is vulnerable to accidental or incidental deletion or alteration. Off-loading is a common process in information systems with limited audit storage capacity. | |
AC-10 CM-6(a) |
N/A | Limit the Number of Concurrent Login Sessions Allowed Per User |
Limiting the number of allowed users and sessions per user can limit risks related to Denial of
Service attacks. This addresses concurrent sessions for a single account and does not address
concurrent sessions by a single user via multiple accounts. To set the number of concurrent
sessions per user add the following line in /etc/security/limits.conf or
a file under /etc/security/limits.d/:
* hard maxlogins 10 |
Limiting simultaneous user logins can insulate the system from denial of service problems caused by excessive logins. Automated login processes operating improperly or maliciously may result in an exceptional number of simultaneous login sessions. | var_accounts_max_concurrent_login_sessions=10 |
AC-11(a) CM-6(a) |
N/A | Set GNOME3 Screensaver Inactivity Timeout |
The idle time-out value for inactivity in the GNOME3 desktop is configured via the idle-delay
setting must be set under an appropriate configuration file(s) in the /etc/dconf/db/local.d directory
and locked in /etc/dconf/db/local.d/locks directory to prevent user modification.
For example, to configure the system for a 15 minute delay, add the following to /etc/dconf/db/local.d/00-security-settings: [org/gnome/desktop/session] idle-delay=uint32 900 |
A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not logout because of the temporary nature of the absence. Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity, GNOME3 can be configured to identify when a user's session has idled and take action to initiate a session lock. | |
AC-11(a) CM-6(a) |
N/A | Set GNOME3 Screensaver Lock Delay After Activation Period |
To activate the locking delay of the screensaver in the GNOME3 desktop when
the screensaver is activated, add or set lock-delay to uint32 5_seconds in
/etc/dconf/db/local.d/00-security-settings. For example:
[org/gnome/desktop/screensaver] lock-delay=uint32 5_secondsAfter the settings have been set, run dconf update. |
A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to logout because of the temporary nature of the absense. | var_screensaver_lock_delay=5_seconds |
IA-11 | N/A | Disallow Configuration to Bypass Password Requirements for Privilege Escalation |
Verify the operating system is not configured to bypass password requirements for privilege
escalation. Check the configuration of the "/etc/pam.d/sudo" file with the following command:
$ sudo grep pam_succeed_if /etc/pam.d/sudoIf any occurrences of "pam_succeed_if" is returned from the command, this is a finding. |
Without re-authentication, users may access resources or perform tasks for which they do not have authorization. When operating systems provide the capability to escalate a functional capability, it is critical the user re-authenticate. | |
CM-11(a) CM-11(b) CM-6(a) CM-5(3) SA-12 SA-12(10) |
N/A | Ensure gpgcheck Enabled for Local Packages | yum should be configured to verify the signature(s) of local packages prior to installation. To configure yum to verify signatures of local packages, set the localpkg_gpgcheck to 1 in /etc/yum.conf. |
Changes to any software components can have significant effects to the overall security
of the operating system. This requirement ensures the software has not been tampered and
has been provided by a trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must be signed with a certificate recognized and approved by the organization. |
|
IA-11 CM-6(a) |
N/A | Ensure Users Re-Authenticate for Privilege Escalation - sudo !authenticate | The sudo !authenticate option, when specified, allows a user to execute commands using sudo without having to authenticate. This should be disabled by making sure that the !authenticate option does not exist in /etc/sudoers configuration file or any sudo configuration snippets in /etc/sudoers.d/. |
Without re-authentication, users may access resources or perform tasks for which they
do not have authorization.
When operating systems provide the capability to escalate a functional capability, it is critical that the user re-authenticate. |
|
IA-11 CM-6(a) |
N/A | Ensure Users Re-Authenticate for Privilege Escalation - sudo NOPASSWD | The sudo NOPASSWD tag, when specified, allows a user to execute commands using sudo without having to authenticate. This should be disabled by making sure that the NOPASSWD tag does not exist in /etc/sudoers configuration file or any sudo configuration snippets in /etc/sudoers.d/. |
Without re-authentication, users may access resources or perform tasks for which they
do not have authorization.
When operating systems provide the capability to escalate a functional capability, it is critical that the user re-authenticate. |
|
IA-11 | N/A | Require Re-Authentication When Using the sudo Command | The sudo timestamp_timeout tag sets the amount of time sudo password prompt waits. The default timestamp_timeout value is 5 minutes. The timestamp_timeout should be configured by making sure that the timestamp_timeout tag exists in /etc/sudoers configuration file or any sudo configuration snippets in /etc/sudoers.d/. If the value is set to an integer less than 0, the user's time stamp will not expire and the user will not have to re-authenticate for privileged actions until the user's session is terminated. |
Without re-authentication, users may access resources or perform tasks for which they
do not have authorization.
When operating systems provide the capability to escalate a functional capability, it is critical that the user re-authenticate. |
|
SI-11(a) SI-11(b) |
N/A | Restrict Access to Kernel Message Buffer |
To set the runtime status of the kernel.dmesg_restrict kernel parameter, run the following command: $ sudo sysctl -w kernel.dmesg_restrict=1To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: kernel.dmesg_restrict = 1 |
Unprivileged access to the kernel syslog can expose sensitive kernel address information. | |
AC-12 SC-10 AC-2(5) CM-6(a) |
N/A | Set Interactive Session Timeout |
Setting the TMOUT option in /etc/profile ensures that
all user sessions will terminate based on inactivity.
The value of TMOUT should be exported and read only.
The TMOUT
setting in a file loaded by /etc/profileor /etc/bashrc, e.g.
/etc/profile.d/tmout.sh should read as follows:
typeset -xr TMOUT=10_minor declare -xr TMOUT=10_minUsing the typeset keyword is preferred for wider compatibility with ksh and other shells.
|
Terminating an idle session within a short time period reduces the window of opportunity for unauthorized personnel to take control of a management session enabled on the console or console port that has been left unattended. | var_accounts_tmout=10_min |
SC-12(2) SC-12(3) IA-7 SC-13 CM-6(a) SC-12 |
N/A | Enable FIPS Mode in GRUB2 |
To ensure FIPS mode is enabled, install package dracut-fips, and rebuild initramfs by running the following commands:
$ sudo yum install dracut-fips dracut -fAfter the dracut command has been run, add the argument fips=1 to the default GRUB 2 command line for the Linux operating system in /etc/default/grub, in the manner below: GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=VolGroup/LogVol06 rd.lvm.lv=VolGroup/lv_swap rhgb quiet rd.shell=0 fips=1"Finally, rebuild the grub.cfg file by using the grub2-mkconfig -ocommand as follows:
|
Use of weak or untested encryption algorithms undermines the purposes of utilizing encryption to protect data. The operating system must implement cryptographic modules adhering to the higher standards approved by the federal government since this provides assurance they have been tested and validated. | |
SC-12(3) CM-6(a) |
N/A | Configure SSSD LDAP Backend Client CA Certificate |
Configure SSSD to implement cryptography to protect the
integrity of LDAP remote access sessions. By setting
the ldap_tls_cacertoption in /etc/sssd/sssd.confto point to the path for the X.509 certificates used for peer authentication. ldap_tls_cacert /path/to/tls/ca.cert |
Without cryptographic integrity protections, information can be altered by
unauthorized users without detection.
Cryptographic mechanisms used for protecting the integrity of information include, for example, signed hash functions using asymmetric cryptography enabling distribution of the public key to verify the hash information while maintaining the confidentiality of the key used to generate the hash. |
|
SC-12(3) CM-6(a) |
N/A | Configure SSSD LDAP Backend Client CA Certificate Location |
Configure SSSD to implement cryptography to protect the
integrity of LDAP remote access sessions. By setting
the ldap_tls_cacertdiroption in /etc/sssd/sssd.confto point to the path for the X.509 certificates used for peer authentication. ldap_tls_cacertdir /path/to/tls/cacert |
Without cryptographic integrity protections, information can be altered by
unauthorized users without detection.
Cryptographic mechanisms used for protecting the integrity of information include, for example, signed hash functions using asymmetric cryptography enabling distribution of the public key to verify the hash information while maintaining the confidentiality of the key used to generate the hash. |
|
SC-12(3) CM-6(a) |
N/A | Configure SSSD LDAP Backend Client to Demand a Valid Certificate from the Server |
Configure SSSD to demand a valid certificate from the server to
protect the integrity of LDAP remote access sessions by setting
the ldap_tls_reqcertoption in /etc/sssd/sssd.confto demand. |
Without a valid certificate presented to the LDAP client backend, the identity of a server can be forged compromising LDAP remote access sessions. | |
AC-17(a) CM-6(a) AC-6(1) |
N/A | Verify Permissions on SSH Server Private *_key Key Files |
SSH server private keys - files that match the /etc/ssh/*_key glob, have to have restricted permissions.
If those files are owned by the root user and the root group, they have to have the 0600 permission or stricter.
If they are owned by the root user, but by a dedicated group ssh_keys , they can have the 0640 permission or stricter.
|
If an unauthorized user obtains the private SSH host key file, the host could be impersonated. | |
AC-17(a) CM-6(a) AC-6(1) |
N/A | Verify Permissions on SSH Server Public *.pub Key Files |
To properly set the permissions of /etc/ssh/*.pub , run the command: $ sudo chmod 0644 /etc/ssh/*.pub |
If a public host key file is modified by an unauthorized user, the SSH service may be compromised. | |
AC-17(a) MA-4(6) CM-6(a) AC-4 SC-8 |
N/A | Verify Any Configured IPSec Tunnel Connections | Libreswan provides an implementation of IPsec and IKE, which permits the creation of secure tunnels over untrusted networks. As such, IPsec can be used to circumvent certain network requirements such as filtering. Verify that if any IPsec connection (conn) configured in /etc/ipsec.conf and /etc/ipsec.d exists is an approved organizational connection. | IP tunneling mechanisms can be used to bypass network filtering. | |
AC-17(a) CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable Compression Or Set Compression to delayed |
Compression is useful for slow network connections over long
distances but can cause performance issues on local LANs. If use of compression
is required, it should be enabled only after a user has authenticated; otherwise,
it should be disabled. To disable compression or delay compression until after
a user has successfully authenticated, add or correct the following line in the
/etc/ssh/sshd_config file:
Compression no |
If compression is allowed in an SSH connection prior to authentication, vulnerabilities in the compression software could result in compromise of the system from an unauthenticated connection, potentially with root privileges. | var_sshd_disable_compression=no |
AC-17(a) CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable SSH Access via Empty Passwords |
Disallow SSH login with empty passwords.
The default SSH configuration disables logins with empty passwords. The appropriate
configuration is used if no value is set for PermitEmptyPasswords.
To explicitly disallow SSH login from accounts with empty passwords, add or correct the following line in /etc/ssh/sshd_config: PermitEmptyPasswords noAny accounts with empty passwords should be disabled immediately, and PAM configuration should prevent users from being able to assign themselves empty passwords. |
Configuring this setting for the SSH daemon provides additional assurance that remote login via SSH will require a password, even in the event of misconfiguration elsewhere. | |
AC-17(a) CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable Kerberos Authentication |
Unless needed, SSH should not permit extraneous or unnecessary
authentication mechanisms like Kerberos.
The default SSH configuration disallows authentication validation through Kerberos. The appropriate configuration is used if no value is set for KerberosAuthentication. To explicitly disable Kerberos authentication, add or correct the following line in /etc/ssh/sshd_config: KerberosAuthentication no |
Kerberos authentication for SSH is often implemented using GSSAPI. If Kerberos is enabled through SSH, the SSH daemon provides a means of access to the system's Kerberos implementation. Configuring these settings for the SSH daemon provides additional assurance that remote logon via SSH will not use unused methods of authentication, even in the event of misconfiguration elsewhere. | |
AC-17(a) CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable SSH Support for .rhosts Files |
SSH can emulate the behavior of the obsolete rsh
command in allowing users to enable insecure access to their
accounts via .rhosts files.
The default SSH configuration disables support for .rhosts. The appropriate configuration is used if no value is set for IgnoreRhosts. To explicitly disable support for .rhosts files, add or correct the following line in /etc/ssh/sshd_config: IgnoreRhosts yes |
SSH trust relationships mean a compromise on one host can allow an attacker to move trivially to other hosts. | |
AC-17(a) CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable SSH Support for Rhosts RSA Authentication |
SSH can allow authentication through the obsolete rsh
command through the use of the authenticating user's SSH keys. This should be disabled.
To ensure this behavior is disabled, add or correct the following line in /etc/ssh/sshd_config: RhostsRSAAuthentication no |
Configuring this setting for the SSH daemon provides additional assurance that remote login via SSH will require a password, even in the event of misconfiguration elsewhere. | |
AC-17(a) CM-7(a) CM-7(b) CM-6(a) |
N/A | Disable SSH Support for User Known Hosts |
SSH can allow system users to connect to systems if a cache of the remote
systems public keys is available. This should be disabled.
To ensure this behavior is disabled, add or correct the following line in /etc/ssh/sshd_config: IgnoreUserKnownHosts yes |
Configuring this setting for the SSH daemon provides additional assurance that remote login via SSH will require a password, even in the event of misconfiguration elsewhere. | |
AC-17(a) CM-7(a) CM-7(b) CM-6(a) |
N/A | Do Not Allow SSH Environment Options |
Ensure that users are not able to override environment variables of the SSH daemon.
The default SSH configuration disables environment processing. The appropriate configuration is used if no value is set for PermitUserEnvironment. To explicitly disable Environment options, add or correct the following /etc/ssh/sshd_config: PermitUserEnvironment no |
SSH environment options potentially allow users to bypass access restriction in some configurations. | |
AC-17(2) | N/A | Use Only FIPS 140-2 Validated Key Exchange Algorithms |
Limit the key exchange algorithms to those which are FIPS-approved.
Add or modify the following line in /etc/ssh/sshd_config
KexAlgorithms ecdh-sha1-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-group-exchange-sha256This rule ensures that only the key exchange algorithms mentioned above (or their subset) are configured for use, keeping the given order of algorithms. |
DoD information systems are required to use FIPS-approved key exchange algorithms. The system will attempt to use the first algorithm presented by the client that matches the server list. Listing the values "strongest to weakest" is a method to ensure the use of the strongest algorithm available to secure the SSH connection. | |
AC-18(a) AC-18(3) CM-7(a) CM-7(b) CM-6(a) MP-7 |
N/A | Deactivate Wireless Network Interfaces |
Deactivating wireless network interfaces should prevent normal usage of the wireless
capability.
Configure the system to disable all wireless network interfaces with the following command: $ sudo nmcli radio all off |
The use of wireless networking can introduce many different attack vectors into the organization's network. Common attack vectors such as malicious association and ad hoc networks will allow an attacker to spoof a wireless access point (AP), allowing validated systems to connect to the malicious AP and enabling the attacker to monitor and record network traffic. These malicious APs can also serve to create a man-in-the-middle attack or be used to create a denial of service to valid network resources. | |
SC-20(a) CM-6(a) |
N/A | Configure Multiple DNS Servers in /etc/resolv.conf |
Determine whether the system is using local or DNS name resolution with the
following command:
$ sudo grep hosts /etc/nsswitch.conf hosts: files dnsIf the DNS entry is missing from the host's line in the "/etc/nsswitch.conf" file, the "/etc/resolv.conf" file must be empty. Verify the "/etc/resolv.conf" file is empty with the following command: $ sudo ls -al /etc/resolv.conf -rw-r--r-- 1 root root 0 Aug 19 08:31 resolv.confIf the DNS entry is found on the host's line of the "/etc/nsswitch.conf" file, then verify the following: Multiple Domain Name System (DNS) Servers should be configured in /etc/resolv.conf. This provides redundant name resolution services in the event that a domain server crashes. To configure the system to contain as least 2 DNS servers, add a corresponding nameserver ip_address entry in /etc/resolv.conf for each DNS server where ip_address is the IP address of a valid DNS server. For example: search example.com nameserver 192.168.0.1 nameserver 192.168.0.2 |
To provide availability for name resolution services, multiple redundant name servers are mandated. A failure in name resolution could lead to the failure of security functions requiring name resolution, which may include time synchronization, centralized authentication, and remote system logging. | |
SC-30 SC-30(2) CM-6(a) |
N/A | Enable Randomized Layout of Virtual Address Space |
To set the runtime status of the kernel.randomize_va_space kernel parameter, run the following command: $ sudo sysctl -w kernel.randomize_va_space=2To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d: kernel.randomize_va_space = 2 |
Address space layout randomization (ASLR) makes it more difficult for an attacker to predict the location of attack code they have introduced into a process's address space during an attempt at exploitation. Additionally, ASLR makes it more difficult for an attacker to know the location of existing code in order to re-purpose it using return oriented programming (ROP) techniques. | |
N/A | Only Authorized Local User Accounts Exist on Operating System |
Enterprise Application tends to use the server or virtual machine exclusively.
Besides the default operating system user, there should be only authorized local
users required by the installed software groups and applications that exist on
the operating system. The authorized user list can be customized in the refine
value variable var_accounts_authorized_local_users_regex.
OVAL regular expression is used for the user list.
Configure the system so all accounts on the system are assigned to an active system,
application, or user account. Remove accounts that do not support approved system
activities or that allow for a normal user to perform administrative-level actions.
To remove unauthorized system accounts, use the following command:
$ sudo userdel unauthorized_user |
Accounts providing no operational purpose provide additional opportunities for system compromise. Unnecessary accounts include user accounts for individuals not requiring access to the system and application accounts for applications not installed on the system. | ||
N/A | Ensure Home Directories are Created for New Users |
All local interactive user accounts, upon creation, should be assigned a home directory.
Configure the operating system to assign home directories to all new local interactive users by setting the CREATE_HOME parameter in /etc/login.defs to yes as follows: CREATE_HOME yes |
If local interactive users are not assigned a valid home directory, there is no place for the storage and control of files they should own. | ||
N/A | Ensure the Default Umask is Set Correctly For Interactive Users | Remove the UMASK environment variable from all interactive users initialization files. | The umask controls the default access mode assigned to newly created files. A umask of 077 limits new files to mode 700 or less permissive. Although umask can be represented as a four-digit number, the first digit representing special access modes is typically ignored or required to be 0. This requirement applies to the globally configured system defaults and the local interactive user defaults for each account on the system. | ||
N/A | User Initialization Files Must Be Group-Owned By The Primary Group |
Change the group owner of interactive users files to the group found
in /etc/passwdfor the user. To change the group owner of a local interactive user home directory, use the following command: $ sudo chgrp USER_GROUP /home/USER/.INIT_FILEThis rule ensures every initialization file related to an interactive user is group-owned by an interactive user. |
Local initialization files for interactive users are used to configure the user's shell environment upon logon. Malicious modification of these files could compromise accounts upon logon. | ||
N/A | User Initialization Files Must Not Run World-Writable Programs |
Set the mode on files being executed by the user initialization files with the
following command:
$ sudo chmod o-w FILE |
If user start-up files execute world-writable programs, especially in unprotected directories, they could be maliciously modified to destroy user files or otherwise compromise the system at the user level. If the system is compromised at the user level, it is easier to elevate privileges to eventually compromise the system at the root and network level. | ||
N/A | User Initialization Files Must Be Owned By the Primary User |
Set the owner of the user initialization files for interactive users to
the primary owner with the following command:
$ sudo chown USER /home/USER/.*This rule ensures every initialization file related to an interactive user is owned by an interactive user. |
Local initialization files are used to configure the user's shell environment upon logon. Malicious modification of these files could compromise accounts upon logon. | ||
N/A | Ensure that Users Path Contains Only Local Directories | Ensure that all interactive user initialization files executable search path statements do not contain statements that will reference a working directory other than the users home directory. | The executable search path (typically the PATH environment variable) contains a list of directories for the shell to search to find executables. If this path includes the current working directory (other than the users home directory), executables in these directories may be executed instead of system commands. This variable is formatted as a colon-separated list of directories. If there is an empty entry, such as a leading or trailing colon or two consecutive colons, this is interpreted as the current working directory. If deviations from the default system search path for the local interactive user are required, they must be documented with the Information System Security Officer (ISSO). | ||
N/A | All Interactive Users Home Directories Must Exist |
Create home directories to all local interactive users that currently do not
have a home directory assigned. Use the following commands to create the user
home directory assigned in /etc/passwd:
$ sudo mkdir /home/USER |
If a local interactive user has a home directory defined that does not exist, the user may be given access to the / directory as the current working directory upon logon. This could create a Denial of Service because the user would not be able to access their logon configuration files, and it may give them visibility to system files they normally would not be able to access. | ||
N/A | All User Files and Directories In The Home Directory Must Be Group-Owned By The Primary Group |
Change the group of a local interactive users files and directories to a
group that the interactive user is a member of. To change the group owner of a
local interactive users files and directories, use the following command:
$ sudo chgrp USER_GROUP /home/USER/FILE_DIRThis rule ensures every file or directory under the home directory related to an interactive user is group-owned by an interactive user. |
If a local interactive users files are group-owned by a group of which the user is not a member, unintended users may be able to access them. | ||
N/A | All User Files and Directories In The Home Directory Must Have a Valid Owner |
Either remove all files and directories from the system that
do not have a valid user, or assign a valid user to all unowned
files and directories. To assign a valid owner to a local
interactive user's files and directories, use the following command:
$ sudo chown -R USER /home/USERThis rule ensures every file or directory under the home directory related to an interactive user is owned by an interactive user. |
If local interactive users do not own the files in their directories, unauthorized users may be able to access them. Additionally, if files are not owned by the user, this could be an indication of system compromise. | ||
N/A | All User Files and Directories In The Home Directory Must Have Mode 0750 Or Less Permissive |
Set the mode on files and directories in the local interactive user home
directory with the following command:
$ sudo chmod 0750 /home/USER/FILE_DIRFiles that begin with a "." are excluded from this requirement. |
If a local interactive user files have excessive permissions, unintended users may be able to access or modify them. | ||
N/A | Ensure auditd Collects Information on Kernel Module Unloading - create_module |
To capture kernel module unloading events, use following line, setting ARCH to
either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S create_module -F key=module-changePlace to add the line depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the line to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the line to file /etc/audit/audit.rules. |
The removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel. | ||
N/A | Configure audispd Plugin To Send Logs To Remote Server |
Configure the audispd plugin to off-load audit records onto a different
system or media from the system being audited.
Set the remote_server option in /etc/audisp/audisp-remote.confwith an IP address or hostname of the system that the audispd plugin should send audit records to. For example remote_server = logcollector |
Information stored in one location is vulnerable to accidental or incidental deletion or alteration.Off-loading is a common process in information systems with limited audit storage capacity. | var_audispd_remote_server=logcollector | |
N/A | Configure auditd to use audispd's remote logging daemon |
To configure the auditd service to use the
audisp-remote plug-in of the audispd audit event multiplexor, set
the active directive in /etc/audisp/plugins.d/au-remote.conf
to yes.
Restart the auditd service to apply configuration changes:
$ sudo service auditd restart |
The auditd service does not include the ability to send audit records to a centralized server for management directly. It does, however, include a plug-in for audit event multiplexor (audispd) to pass audit records to a remote server. | ||
N/A | Ensure the audispd's remote logging daemon direction is correct |
Ensure the direction of logs in audisp-remote
plug-in of the audispd audit event multiplexor is correct.
Check that the direction directive in
/etc/audisp/plugins.d/au-remote.conf is out.
Restart the auditd service to apply configuration changes:
$ sudo service auditd restart |
The auditd service does not include the ability to send audit records to a centralized server for management directly. It does, however, include a plug-in for audit event multiplexor (audispd) to pass audit records to a remote server. The direction is dictated by the plugin, and this parameter is used by the multiplexor to understand the direction of events. | ||
N/A | Ensure the audispd's remote logging daemon executable is correct |
Ensure the executable used by audisp-remote
plug-in of the audispd audit event multiplexor is correct.
Check that the path directive in
/etc/audisp/plugins.d/au-remote.conf is /sbin/audisp-remote.
Restart the auditd service to apply configuration changes:
$ sudo service auditd restart |
The auditd service does not include the ability to send audit records to a centralized server for management directly. It does, however, include a plug-in for audit event multiplexor (audispd) to pass audit records to a remote server. | ||
N/A | Ensure the audispd's remote logging daemon type is correct |
Ensure the type used by audisp-remote
plug-in of the audispd audit event multiplexor is correct.
Check that the type directive in
/etc/audisp/plugins.d/au-remote.conf is always.
Restart the auditd service to apply configuration changes:
$ sudo service auditd restart |
The auditd service does not include the ability to send audit records to a centralized server for management directly. It does, however, include a plug-in for audit event multiplexor (audispd) to pass audit records to a remote server. | ||
N/A | Ensure system-auth and password-auth files are symbolic links pointing to system-auth-local and password-auth-local | Oracle Linux 7 must be configured to prevent overwriting of custom authentication configuration settings by the authconfig utility. This can be avoided by creating new local configuration files and creating new or moving existing symbolic links to them. The authconfig utility will recognize the local configuration files and not overwrite them, while writing its own settings to the original configuration files. | When using the authconfig utility to modify authentication configuration settings, the "system-auth" and "password-auth" files and any custom settings that they may contain are overwritten. | ||
N/A | Make sure that the dconf databases are up-to-date with regards to respective keyfiles |
By default, DConf uses a binary database as a data backend.
The system-level database is compiled from keyfiles in the /etc/dconf/db/
directory by the dconf updatecommand. More specifically, content present in the following directories: /etc/dconf/db/local.d /etc/dconf/db/local.d |
Unlike text-based keyfiles, the binary database is impossible to check by OVAL. Therefore, in order to evaluate dconf configuration, both have to be true at the same time - configuration files have to be compliant, and the database needs to be more recent than those keyfiles, which gives confidence that it reflects them. | ||
N/A | All Interactive User Home Directories Must Be Group-Owned By The Primary Group |
Change the group owner of interactive users home directory to the
group found in /etc/passwd. To change the group owner of
interactive users home directory, use the following command:
$ sudo chgrp USER_GROUP /home/USERThis rule ensures every home directory related to an interactive user is group-owned by an interactive user. It also ensures that interactive users are group-owners of one and only one home directory. |
If the Group Identifier (GID) of a local interactive users home directory is not the same as the primary GID of the user, this would allow unauthorized access to the users files, and users that share the same group may not be able to access files that they legitimately should. | ||
N/A | All Interactive User Home Directories Must Be Owned By The Primary User |
Change the owner of interactive users home directories to that correct
owner. To change the owner of a interactive users home directory, use
the following command:
$ sudo chown USER /home/USERThis rule ensures every home directory related to an interactive user is owned by an interactive user. It also ensures that interactive users are owners of one and only one home directory. |
If a local interactive user does not own their home directory, unauthorized users could access or modify the user's files, and the users may not be able to access their own files. | ||
N/A | Ensure All User Initialization Files Have Mode 0740 Or Less Permissive |
Set the mode of the user initialization files to 0740 with the
following command:
$ sudo chmod 0740 /home/USER/.INIT_FILE |
Local initialization files are used to configure the user's shell environment upon logon. Malicious modification of these files could compromise accounts upon logon. | ||
N/A | All Interactive User Home Directories Must Have mode 0750 Or Less Permissive |
Change the mode of interactive users home directories to 0750. To
change the mode of interactive users home directory, use the
following command:
$ sudo chmod 0750 /home/USER |
Excessive permissions on local interactive user home directories may allow unauthorized access to user files by other users. | ||
N/A | Boot Loader Is Not Installed On Removeable Media |
The system must not allow removable media to be used as the boot loader.
Remove alternate methods of booting the system from removable media.
usb0, cd, fd0, etc. are some examples of removeable
media which should not exist in the lines:
set root='hd0,msdos1' |
Malicious users with removable boot media can gain access to a system configured to use removable media as the boot loader. | ||
N/A | Remove Host-Based Authentication Files |
The shosts.equiv file lists remote hosts and users that are trusted by the local
system. To remove these files, run the following command to delete them from any location:
$ sudo rm /[path]/[to]/[file]/shosts.equiv |
The shosts.equiv files are used to configure host-based authentication for the system via SSH. Host-based authentication is not sufficient for preventing unauthorized access to the system, as it does not require interactive identification and authentication of a connection request, or for the use of two-factor authentication. | ||
N/A | Remove User Host-Based Authentication Files |
The ~/.shosts (in each user's home directory) files
list remote hosts and users that are trusted by the
local system. To remove these files, run the following command
to delete them from any location:
$ sudo find / -name '.shosts' -type f -delete |
The .shosts files are used to configure host-based authentication for individual users or the system via SSH. Host-based authentication is not sufficient for preventing unauthorized access to the system, as it does not require interactive identification and authentication of a connection request, or for the use of two-factor authentication. | ||
N/A | Prevent Unrestricted Mail Relaying |
Modify the /etc/postfix/main.cffile to restrict client connections to the local network with the following command: $ sudo postconf -e 'smtpd_client_restrictions = permit_mynetworks,reject' |
If unrestricted mail relaying is permitted, unauthorized senders could use this host as a mail relay for the purpose of sending spam or other unauthorized activity. | ||
N/A | Disable the ssh_sysadm_login SELinux Boolean |
By default, the SELinux boolean ssh_sysadm_login is disabled.
If this setting is enabled, it should be disabled.
To disable the ssh_sysadm_login SELinux boolean, run the following command:
$ sudo setsebool -P ssh_sysadm_login off |
Preventing non-privileged users from executing privileged functions mitigates the risk that unauthorized individuals or processes may gain unnecessary access to information or privileges. Privileged functions include, for example, establishing accounts, performing system integrity checks, or administering cryptographic key management activities. Non-privileged users are individuals who do not possess appropriate authorizations. Circumventing intrusion detection and prevention mechanisms or malicious code protection mechanisms are examples of privileged functions that require protection from non-privileged users. | ||
N/A | Map System Users To The Appropriate SELinux Role |
Configure the operating system to prevent non-privileged users from executing
privileged functions to include disabling, circumventing, or altering
implemented security safeguards/countermeasures. All administrators must be
mapped to the sysadm_u or staff_u users with the
appropriate domains (sysadm_t and staff_t).
$ sudo semanage login -m -s sysadm_u USERor $ sudo semanage login -m -s staff_u USER All authorized non-administrative users must be mapped to the user_u role or the appropriate domain (user_t). $ sudo semanage login -m -s user_u USER |
Preventing non-privileged users from executing privileged functions mitigates
the risk that unauthorized individuals or processes may gain unnecessary access
to information or privileges.
Privileged functions include, for example, establishing accounts, performing system integrity checks, or administering cryptographic key management activities. Non-privileged users are individuals who do not possess appropriate authorizations. Circumventing intrusion detection and prevention mechanisms or malicious code protection mechanisms are examples of privileged functions that require protection from non-privileged users. |
||
N/A | Configure Smart Card Certificate Status Checking |
Configure the operating system to do certificate status checking for PKI
authentication. Modify all of the cert_policy lines in
/etc/pam_pkcs11/pam_pkcs11.conf to include ocsp_on like so:
cert_policy = ca, ocsp_on, signature; |
Using an authentication device, such as a CAC or token that is separate from
the information system, ensures that even if the information system is
compromised, that compromise will not affect credentials stored on the
authentication device.
Multifactor solutions that require devices separate from information systems gaining access include, for example, hardware tokens providing time-based or challenge-response authenticators and smart cards such as the U.S. Government Personal Identity Verification card and the DoD Common Access Card. |
||
N/A | Use Only FIPS 140-2 Validated Ciphers |
Limit the ciphers to those algorithms which are FIPS-approved.
The following line in /etc/ssh/sshd_config
demonstrates use of FIPS-approved ciphers:
Ciphers aes256-ctr,aes192-ctr,aes128-ctrThis rule ensures that there are configured ciphers mentioned above (or their subset), keeping the given order of algorithms. |
Unapproved mechanisms that are used for authentication to the cryptographic module are not verified and therefore
cannot be relied upon to provide confidentiality or integrity, and system data may be compromised.
Operating systems utilizing encryption are required to use FIPS-compliant mechanisms for authenticating to cryptographic modules. FIPS 140-2 is the current standard for validating that mechanisms used to access cryptographic modules utilize authentication that meets industry and government requirements. For government systems, this allows Security Levels 1, 2, 3, or 4 for use on Oracle Linux 7. |
||
N/A | Use Only FIPS 140-2 Validated MACs |
Limit the MACs to those hash algorithms which are FIPS-approved.
The following line in /etc/ssh/sshd_config
demonstrates use of FIPS-approved MACs:
MACs hmac-sha2-512,hmac-sha2-256This rule ensures that there are configured MACs mentioned above (or their subset), keeping the given order of algorithms. |
DoD Information Systems are required to use FIPS-approved cryptographic hash functions. The only SSHv2 hash algorithms meeting this requirement is SHA2. | ||
N/A | Ensure sudo only includes the default configuration directory | Administrators can configure authorized sudo users via drop-in files, and it is possible to include other directories and configuration files from the file currently being parsed. Make sure that /etc/sudoers only includes drop-in configuration files from /etc/sudoers.d, or that no drop-in file is included. Either the /etc/sudoers should contain only one #includedir directive pointing to /etc/sudoers.d, and no file in /etc/sudoers.d/ should include other files or directories; Or the /etc/sudoers should not contain any #include, @include, #includedir or @includedir directives. Note that the '#' character doesn't denote a comment in the configuration file. | Some sudo configurtion options allow users to run programs without re-authenticating. Use of these configuration options makes it easier for one compromised accound to be used to compromise other accounts. | ||
N/A | UEFI Boot Loader Is Not Installed On Removeable Media |
The system must not allow removable media to be used as the boot loader.
Remove alternate methods of booting the system from removable media.
usb0, cd, fd0, etc. are some examples of removeable
media which should not exist in the lines:
set root='hd0,msdos1' |
Malicious users with removable boot media can gain access to a system configured to use removable media as the boot loader. |