Standard System Security Profile for Red Hat Enterprise Linux 8


Mapping CCE Rule Title Description Rationale Variable Setting
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80685-1 Record Events that Modify the System's Discretionary Access Controls - chmod At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80686-9 Record Events that Modify the System's Discretionary Access Controls - chown At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80687-7 Record Events that Modify the System's Discretionary Access Controls - fchmod At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80688-5 Record Events that Modify the System's Discretionary Access Controls - fchmodat At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80689-3 Record Events that Modify the System's Discretionary Access Controls - fchown At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80690-1 Record Events that Modify the System's Discretionary Access Controls - fchownat At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80691-9 Record Events that Modify the System's Discretionary Access Controls - fremovexattr At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S fremovexattr -F auid=0 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S fremovexattr -F auid=0 -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S fremovexattr -F auid=0 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S fremovexattr -F auid=0 -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80692-7 Record Events that Modify the System's Discretionary Access Controls - fsetxattr At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S fsetxattr -F auid=0 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S fsetxattr -F auid=0 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S fsetxattr -F auid=0 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S fsetxattr -F auid=0 -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80693-5 Record Events that Modify the System's Discretionary Access Controls - lchown At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80694-3 Record Events that Modify the System's Discretionary Access Controls - lremovexattr At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S lremovexattr -F auid=0 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S lremovexattr -F auid=0 -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S lremovexattr -F auid=0 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S lremovexattr -F auid=0 -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80695-0 Record Events that Modify the System's Discretionary Access Controls - lsetxattr At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S lsetxattr -F auid=0 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S lsetxattr -F auid=0 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S lsetxattr -F auid=0 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S lsetxattr -F auid=0 -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80696-8 Record Events that Modify the System's Discretionary Access Controls - removexattr At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S removexattr -F auid=0 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S removexattr -F auid=0 -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S removexattr -F auid=0 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S removexattr -F auid=0 -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80697-6 Record Events that Modify the System's Discretionary Access Controls - setxattr At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S setxattr -F auid=0 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S setxattr -F auid=0 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b32 -S setxattr -F auid=0 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
-a always,exit -F arch=b64 -S setxattr -F auid=0 -F key=perm_mod
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80702-4 Ensure auditd Collects File Deletion Events by User At a minimum the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename -S renameat -F auid>=1000 -F auid!=unset -F key=delete
Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80709-9 Ensure auditd Collects Information on Kernel Module Loading and Unloading To capture kernel module loading and unloading events, use following lines, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:
-a always,exit -F arch=ARCH -S init_module,finit_module,delete_module -F auid>=1000 -F auid!=unset -F key=modules
The place to add the lines depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the lines to file /etc/audit/audit.rules.
The addition/removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80721-4 Record Events that Modify the System's Mandatory Access Controls If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-w /etc/selinux/ -p wa -k MAC-policy
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/selinux/ -p wa -k MAC-policy
The system's mandatory access policy (SELinux) should not be arbitrarily changed by anything other than administrator action. All changes to MAC policy should be audited.
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80722-2 Ensure auditd Collects Information on Exporting to Media (successful) At a minimum, the audit system should collect media exportation events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=unset -F key=export
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=unset -F key=export
The unauthorized exportation of data to external media could result in an information leak where classified information, Privacy Act information, and intellectual property could be lost. An audit trail should be created each time a filesystem is mounted to help identify and guard against information loss.
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80723-0 Record Events that Modify the System's Network Environment If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S sethostname,setdomainname -F key=audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S sethostname,setdomainname -F key=audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
The network environment should not be modified by anything other than administrator action. Any change to network parameters should be audited.
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80745-3 Record attempts to alter time through adjtimex If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80746-1 Record Attempts to Alter Time Through clock_settime If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80747-9 Record attempts to alter time through settimeofday If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80748-7 Record Attempts to Alter Time Through stime If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit lookup table, the corresponding "-F arch=b64" form of this rule is not expected to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule form itself is sufficient for both 32 bit and 64 bit systems). If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit lookup table, the corresponding "-F arch=b64" form of this rule is not expected to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule form itself is sufficient for both 32 bit and 64 bit systems). The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined system calls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80749-5 Record Attempts to Alter the localtime File If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-w /etc/localtime -p wa -k audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/localtime -p wa -k audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport and should always be used.
Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.
AU-2(d)
AU-12(c)
CM-6(a)
CCE-80750-3 Ensure auditd Collects Unauthorized Access Attempts to Files (unsuccessful) At a minimum the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.
IA-2
CM-6(a)
CCE-80822-0 All GIDs referenced in /etc/passwd must be defined in /etc/group Add a group to the system for each GID referenced without a corresponding group. If a user is assigned the Group Identifier (GID) of a group not existing on the system, and a group with the Group Identifier (GID) is subsequently created, the user may have unintended rights to any files associated with the group.
AC-2(g)
AU-3
AU-10
AU-2(d)
AU-12(c)
AU-14(1)
AC-6(9)
CM-6(a)
SI-4(23)
CCE-80872-5 Enable auditd Service The auditd service is an essential userspace component of the Linux Auditing System, as it is responsible for writing audit records to disk. The auditd service can be enabled with the following command:
$ sudo systemctl enable auditd.service
Without establishing what type of events occurred, it would be difficult to establish, correlate, and investigate the events leading up to an outage or attack. Ensuring the auditd service is active ensures audit records generated by the kernel are appropriately recorded.

Additionally, a properly configured audit subsystem ensures that actions of individual system users can be uniquely traced to those users so they can be held accountable for their actions.
AC-2(4)
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80724-8 Ensure auditd Collects Information on the Use of Privileged Commands The audit system should collect information about usage of privileged commands for all users. These are commands with suid or sgid bits on and they are specially risky in local block device partitions not mounted with noexec and nosuid options. Therefore, these partitions should be first identified by the following command:
findmnt -n -l -k -it $(awk '/nodev/ { print $2 }' /proc/filesystems | paste -sd,) | grep -Pv "noexec|nosuid"
For all partitions listed by the previous command, it is necessary to search for setuid / setgid programs using the following command:
$ sudo find PARTITION -xdev -perm /6000 -type f 2>/dev/null
For each setuid / setgid program identified by the previous command, an audit rule must be present in the appropriate place using the following line structure:
-a always,exit -F path=PROG_PATH -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup, add the line to a file with suffix .rules in the /etc/audit/rules.d directory, replacing the PROG_PATH part with the full path of that setuid / setgid identified program. If the auditd daemon is configured to use the auditctl utility instead, add the line to the /etc/audit/audit.rules file, also replacing the PROG_PATH part with the full path of that setuid / setgid identified program.
Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern that can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.
AC-2(4)
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80757-8 Record Events that Modify User/Group Information If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification

If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification
In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.
SI-2(5)
SI-2(c)
CM-6(a)
CCE-80865-9 Ensure Software Patches Installed If the system is joined to the Red Hat Network, a Red Hat Satellite Server, or a yum server, run the following command to install updates:
$ sudo yum update
If the system is not configured to use one of these sources, updates (in the form of RPM packages) can be manually downloaded from the Red Hat Network and installed using rpm.

NOTE: U.S. Defense systems are required to be patched within 30 days or sooner as local policy dictates.
Installing software updates is a fundamental mitigation against the exploitation of publicly-known vulnerabilities. If the most recent security patches and updates are not installed, unauthorized users may take advantage of weaknesses in the unpatched software. The lack of prompt attention to patching could result in a system compromise.
AC-2(7)(b)
AU-2(d)
AU-12(c)
AC-6(9)
CM-6(a)
CCE-80743-8 Ensure auditd Collects System Administrator Actions At a minimum, the audit system should collect administrator actions for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
The actions taken by system administrators should be audited to keep a record of what was executed on the system, as well as, for accountability purposes.
AC-4
CM-7(a)
CM-7(b)
CM-6(a)
CCE-80883-2 Disable Network Router Discovery Daemon (rdisc) The rdisc service implements the client side of the ICMP Internet Router Discovery Protocol (IRDP), which allows discovery of routers on the local subnet. If a router is discovered then the local routing table is updated with a corresponding default route. By default this daemon is disabled. The rdisc service can be disabled with the following command:
$ sudo systemctl mask --now rdisc.service
General-purpose systems typically have their network and routing information configured statically by a system administrator. Workstations or some special-purpose systems often use DHCP (instead of IRDP) to retrieve dynamic network configuration information.
IA-5(1)(a)
IA-5(c)
CM-6(a)
CCE-80841-0 Prevent Login to Accounts With Empty Password If an account is configured for password authentication but does not have an assigned password, it may be possible to log into the account without authentication. Remove any instances of the nullok in /etc/pam.d/system-auth and /etc/pam.d/password-auth to prevent logins with empty passwords. If an account has an empty password, anyone could log in and run commands with the privileges of that account. Accounts with empty passwords should never be used in operational environments.
CM-5(3)
SI-7
SC-12
SC-12(3)
CM-6(a)
SA-12
SA-12(10)
CM-11(a)
CM-11(b)
CCE-80790-9 Ensure gpgcheck Enabled In Main yum Configuration The gpgcheck option controls whether RPM packages' signatures are always checked prior to installation. To configure yum to check package signatures before installing them, ensure the following line appears in /etc/yum.conf in the [main] section:
gpgcheck=1
Changes to any software components can have significant effects on the overall security of the operating system. This requirement ensures the software has not been tampered with and that it has been provided by a trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must be signed with a certificate recognized and approved by the organization.
Verifying the authenticity of the software prior to installation validates the integrity of the patch or upgrade received from a vendor. This ensures the software has not been tampered with and that it has been provided by a trusted vendor. Self-signed certificates are disallowed by this requirement. Certificates used to verify the software must be from an approved Certificate Authority (CA).
CM-5(3)
SI-7
SC-12
SC-12(3)
CM-6(a)
CCE-80795-8 Ensure Red Hat GPG Key Installed To ensure the system can cryptographically verify base software packages come from Red Hat (and to connect to the Red Hat Network to receive them), the Red Hat GPG key must properly be installed. To install the Red Hat GPG key, run:
$ sudo subscription-manager register
If the system is not connected to the Internet or an RHN Satellite, then install the Red Hat GPG key from trusted media such as the Red Hat installation CD-ROM or DVD. Assuming the disc is mounted in /media/cdrom, use the following command as the root user to import it into the keyring:
$ sudo rpm --import /media/cdrom/RPM-GPG-KEY
Alternatively, the key may be pre-loaded during the RHEL installation. In such cases, the key can be installed by running the following command:
sudo rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
Changes to software components can have significant effects on the overall security of the operating system. This requirement ensures the software has not been tampered with and that it has been provided by a trusted vendor. The Red Hat GPG key is necessary to cryptographically verify packages are from Red Hat.
CM-6(a)
CM-6(a)
CCE-80672-9 Ensure that Root's Path Does Not Include World or Group-Writable Directories For each element in root's path, run:
# ls -ld DIR
and ensure that write permissions are disabled for group and other.
Such entries increase the risk that root could execute code provided by unprivileged users, and potentially malicious code.
CM-6(a)
MA-4(6)
SC-13
SC-12(2)
SC-12(3)
CCE-80937-6 Configure Libreswan to use System Crypto Policy Crypto Policies provide a centralized control over crypto algorithms usage of many packages. Libreswan is supported by system crypto policy, but the Libreswan configuration may be set up to ignore it. To check that Crypto Policies settings are configured correctly, ensure that the /etc/ipsec.conf includes the appropriate configuration file. In /etc/ipsec.conf, make sure that the following line is not commented out or superseded by later includes: include /etc/crypto-policies/back-ends/libreswan.config Overriding the system crypto policy makes the behavior of the Libreswan service violate expectations, and makes system configuration more fragmented.
CM-6(a)
AC-6(1)
CCE-80783-4 Verify that All World-Writable Directories Have Sticky Bits Set When the so-called 'sticky bit' is set on a directory, only the owner of a given file may remove that file from the directory. Without the sticky bit, any user with write access to a directory may remove any file in the directory. Setting the sticky bit prevents users from removing each other's files. In cases where there is no reason for a directory to be world-writable, a better solution is to remove that permission rather than to set the sticky bit. However, if a directory is used by a particular application, consult that application's documentation instead of blindly changing modes.
To set the sticky bit on a world-writable directory DIR, run the following command:
$ sudo chmod +t DIR
Failing to set the sticky bit on public directories allows unauthorized users to delete files in the directory structure.

The only authorized public directories are those temporary directories supplied with the system, or those designed to be temporary file repositories. The setting is normally reserved for directories used by the system, by users for temporary file storage (such as /tmp), and for directories requiring global read/write access.
CM-6(a)
AC-6(1)
CCE-85915-7 Verify the UEFI Boot Loader grub.cfg Group Ownership The file /boot/efi/EFI/redhat/grub.cfg should be group-owned by the root group to prevent destruction or modification of the file. To properly set the group owner of /boot/efi/EFI/redhat/grub.cfg, run the command:
$ sudo chgrp root /boot/efi/EFI/redhat/grub.cfg
The root group is a highly-privileged group. Furthermore, the group-owner of this file should not have any access privileges anyway.
CM-6(a)
AC-6(1)
CCE-86012-2 Verify /boot/efi/EFI/redhat/user.cfg Group Ownership The file /boot/efi/EFI/redhat/user.cfg should be group-owned by the root group to prevent reading or modification of the file. To properly set the group owner of /boot/efi/EFI/redhat/user.cfg, run the command:
$ sudo chgrp root /boot/efi/EFI/redhat/user.cfg
The root group is a highly-privileged group. Furthermore, the group-owner of this file should not have any access privileges anyway. Non-root users who read the boot parameters may be able to identify weaknesses in security upon boot and be able to exploit them.
CM-6(a)
AC-6(1)
CCE-80796-6 Verify Group Who Owns group File To properly set the group owner of /etc/group, run the command:
$ sudo chgrp root /etc/group
The /etc/group file contains information regarding groups that are configured on the system. Protection of this file is important for system security.
CM-6(a)
AC-6(1)
CCE-80798-2 Verify Group Who Owns passwd File To properly set the group owner of /etc/passwd, run the command:
$ sudo chgrp root /etc/passwd
The /etc/passwd file contains information about the users that are configured on the system. Protection of this file is critical for system security.
CM-6(a)
AC-6(1)
CCE-80799-0 Verify Group Who Owns shadow File To properly set the group owner of /etc/shadow, run the command:
$ sudo chgrp root /etc/shadow
The /etc/shadow file stores password hashes. Protection of this file is critical for system security.
CM-6(a)
AC-6(1)
CCE-80800-6 Verify /boot/grub2/grub.cfg Group Ownership The file /boot/grub2/grub.cfg should be group-owned by the root group to prevent destruction or modification of the file. To properly set the group owner of /boot/grub2/grub.cfg, run the command:
$ sudo chgrp root /boot/grub2/grub.cfg
The root group is a highly-privileged group. Furthermore, the group-owner of this file should not have any access privileges anyway.
CM-6(a)
AC-6(1)
CCE-86009-8 Verify /boot/grub2/user.cfg Group Ownership The file /boot/grub2/user.cfg should be group-owned by the root group to prevent reading or modification of the file. To properly set the group owner of /boot/grub2/user.cfg, run the command:
$ sudo chgrp root /boot/grub2/user.cfg
The root group is a highly-privileged group. Furthermore, the group-owner of this file should not have any access privileges anyway. Non-root users who read the boot parameters may be able to identify weaknesses in security upon boot and be able to exploit them.
CM-6(a)
AC-6(1)
CCE-85913-2 Verify the UEFI Boot Loader grub.cfg User Ownership The file /boot/efi/EFI/redhat/grub.cfg should be owned by the root user to prevent destruction or modification of the file. To properly set the owner of /boot/efi/EFI/redhat/grub.cfg, run the command:
$ sudo chown root /boot/efi/EFI/redhat/grub.cfg 
Only root should be able to modify important boot parameters.
CM-6(a)
AC-6(1)
CCE-86021-3 Verify /boot/efi/EFI/redhat/user.cfg User Ownership The file /boot/efi/EFI/redhat/user.cfg should be owned by the root user to prevent reading or modification of the file. To properly set the owner of /boot/efi/EFI/redhat/user.cfg, run the command:
$ sudo chown root /boot/efi/EFI/redhat/user.cfg 
Only root should be able to modify important boot parameters. Also, non-root users who read the boot parameters may be able to identify weaknesses in security upon boot and be able to exploit them.
CM-6(a)
AC-6(1)
CCE-80801-4 Verify User Who Owns group File To properly set the owner of /etc/group, run the command:
$ sudo chown root /etc/group 
The /etc/group file contains information regarding groups that are configured on the system. Protection of this file is important for system security.
CM-6(a)
AC-6(1)
CCE-80803-0 Verify User Who Owns passwd File To properly set the owner of /etc/passwd, run the command:
$ sudo chown root /etc/passwd 
The /etc/passwd file contains information about the users that are configured on the system. Protection of this file is critical for system security.
CM-6(a)
AC-6(1)
CCE-80804-8 Verify User Who Owns shadow File To properly set the owner of /etc/shadow, run the command:
$ sudo chown root /etc/shadow 
The /etc/shadow file contains the list of local system accounts and stores password hashes. Protection of this file is critical for system security. Failure to give ownership of this file to root provides the designated owner with access to sensitive information which could weaken the system security posture.
CM-6(a)
AC-6(1)
CCE-80805-5 Verify /boot/grub2/grub.cfg User Ownership The file /boot/grub2/grub.cfg should be owned by the root user to prevent destruction or modification of the file. To properly set the owner of /boot/grub2/grub.cfg, run the command:
$ sudo chown root /boot/grub2/grub.cfg 
Only root should be able to modify important boot parameters.
CM-6(a)
AC-6(1)
CCE-86015-5 Verify /boot/grub2/user.cfg User Ownership The file /boot/grub2/user.cfg should be owned by the root user to prevent reading or modification of the file. To properly set the owner of /boot/grub2/user.cfg, run the command:
$ sudo chown root /boot/grub2/user.cfg 
Only root should be able to modify important boot parameters. Also, non-root users who read the boot parameters may be able to identify weaknesses in security upon boot and be able to exploit them.
CM-6(a)
AC-6(1)
CCE-85912-4 Verify the UEFI Boot Loader grub.cfg Permissions File permissions for /boot/efi/EFI/redhat/grub.cfg should be set to 700. To properly set the permissions of /boot/efi/EFI/redhat/grub.cfg, run the command:
$ sudo chmod 700 /boot/efi/EFI/redhat/grub.cfg
Proper permissions ensure that only the root user can modify important boot parameters.
CM-6(a)
AC-6(1)
CCE-86028-8 Verify /boot/efi/EFI/redhat/user.cfg Permissions File permissions for /boot/efi/EFI/redhat/user.cfg should be set to 600. To properly set the permissions of /boot/efi/EFI/redhat/user.cfg, run the command:
$ sudo chmod 600 /boot/efi/EFI/redhat/user.cfg
Proper permissions ensure that only the root user can read or modify important boot parameters.
CM-6(a)
AC-6(1)
CCE-80810-5 Verify Permissions on group File To properly set the permissions of /etc/group, run the command:
$ sudo chmod 0644 /etc/group
The /etc/group file contains information regarding groups that are configured on the system. Protection of this file is important for system security.
CM-6(a)
AC-6(1)
CCE-80812-1 Verify Permissions on passwd File To properly set the permissions of /etc/passwd, run the command:
$ sudo chmod 0644 /etc/passwd
If the /etc/passwd file is writable by a group-owner or the world the risk of its compromise is increased. The file contains the list of accounts on the system and associated information, and protection of this file is critical for system security.
CM-6(a)
AC-6(1)
CCE-80814-7 Verify /boot/grub2/grub.cfg Permissions File permissions for /boot/grub2/grub.cfg should be set to 600. To properly set the permissions of /boot/grub2/grub.cfg, run the command:
$ sudo chmod 600 /boot/grub2/grub.cfg
Proper permissions ensure that only the root user can modify important boot parameters.
CM-6(a)
AC-6(1)
CCE-80816-2 Ensure All SGID Executables Are Authorized The SGID (set group id) bit should be set only on files that were installed via authorized means. A straightforward means of identifying unauthorized SGID files is determine if any were not installed as part of an RPM package, which is cryptographically verified. Investigate the origin of any unpackaged SGID files. This configuration check considers authorized SGID files those which were installed via RPM. It is assumed that when an individual has sudo access to install an RPM and all packages are signed with an organizationally-recognized GPG key, the software should be considered an approved package on the system. Any SGID file not deployed through an RPM will be flagged for further review. Executable files with the SGID permission run with the privileges of the owner of the file. SGID files of uncertain provenance could allow for unprivileged users to elevate privileges. The presence of these files should be strictly controlled on the system.
CM-6(a)
AC-6(1)
CCE-80817-0 Ensure All SUID Executables Are Authorized The SUID (set user id) bit should be set only on files that were installed via authorized means. A straightforward means of identifying unauthorized SUID files is determine if any were not installed as part of an RPM package, which is cryptographically verified. Investigate the origin of any unpackaged SUID files. This configuration check considers authorized SUID files those which were installed via RPM. It is assumed that when an individual has sudo access to install an RPM and all packages are signed with an organizationally-recognized GPG key, the software should be considered an approved package on the system. Any SUID file not deployed through an RPM will be flagged for further review. Executable files with the SUID permission run with the privileges of the owner of the file. SUID files of uncertain provenance could allow for unprivileged users to elevate privileges. The presence of these files should be strictly controlled on the system.
CM-6(a)
AC-6(1)
CCE-80818-8 Ensure No World-Writable Files Exist It is generally a good idea to remove global (other) write access to a file when it is discovered. However, check with documentation for specific applications before making changes. Also, monitor for recurring world-writable files, as these may be symptoms of a misconfigured application or user account. Finally, this applies to real files and not virtual files that are a part of pseudo file systems such as sysfs or procfs. Data in world-writable files can be modified by any user on the system. In almost all circumstances, files can be configured using a combination of user and group permissions to support whatever legitimate access is needed without the risk caused by world-writable files.
CM-6(a)
AC-6(1)
CCE-86024-7 Verify /boot/grub2/user.cfg Permissions File permissions for /boot/grub2/user.cfg should be set to 600. To properly set the permissions of /boot/grub2/user.cfg, run the command:
$ sudo chmod 600 /boot/grub2/user.cfg
Proper permissions ensure that only the root user can read or modify important boot parameters.
CM-6(a) CCE-80847-7 Ensure rsyslog is Installed Rsyslog is installed by default. The rsyslog package can be installed with the following command:
 $ sudo yum install rsyslog
The rsyslog package provides the rsyslog daemon, which provides system logging services.
CM-6(a)
AU-4
SC-5(2)
CCE-80853-5 Ensure /var/log Located On Separate Partition System logs are stored in the /var/log directory. Ensure that /var/log has its own partition or logical volume at installation time, or migrate it using LVM. Placing /var/log in its own partition enables better separation between log files and other files in /var/.
CM-6(a)
AU-4
SC-5(2)
CCE-80854-3 Ensure /var/log/audit Located On Separate Partition Audit logs are stored in the /var/log/audit directory. Ensure that /var/log/audit has its own partition or logical volume at installation time, or migrate it using LVM. Make absolutely certain that it is large enough to store all audit logs that will be created by the auditing daemon. Placing /var/log/audit in its own partition enables better separation between audit files and other files, and helps ensure that auditing cannot be halted due to the partition running out of space.
CM-6(d)
CM-6(c)
SI-7
SI-7(1)
SI-7(6)
AU-9(3)
CCE-80857-6 Verify File Hashes with RPM Without cryptographic integrity protections, system executables and files can be altered by unauthorized users without detection. The RPM package management system can check the hashes of installed software packages, including many that are important to system security. To verify that the cryptographic hash of system files and commands matches vendor values, run the following command to list which files on the system have hashes that differ from what is expected by the RPM database:
$ rpm -Va --noconfig | grep '^..5'
If the file was not expected to change, investigate the cause of the change using audit logs or other means. The package can then be reinstalled to restore the file. Run the following command to determine which package owns the file:
$ rpm -qf FILENAME
The package can be reinstalled from a yum repository using the command:
$ sudo yum reinstall PACKAGENAME
Alternatively, the package can be reinstalled from trusted media using the command:
$ sudo rpm -Uvh PACKAGENAME
The hashes of important files like system executables should match the information given by the RPM database. Executables with erroneous hashes could be a sign of nefarious activity on the system.
CM-6(d)
CM-6(c)
SI-7
SI-7(1)
SI-7(6)
AU-9(3)
CM-6(a)
CCE-80858-4 Verify and Correct File Permissions with RPM The RPM package management system can check file access permissions of installed software packages, including many that are important to system security. Verify that the file permissions of system files and commands match vendor values. Check the file permissions with the following command:
$ sudo rpm -Va | awk '{ if (substr($0,2,1)=="M") print $NF }'
Output indicates files that do not match vendor defaults. After locating a file with incorrect permissions, run the following command to determine which package owns it:
$ rpm -qf FILENAME

Next, run the following command to reset its permissions to the correct values:
$ sudo rpm --restore PACKAGENAME
Permissions on system binaries and configuration files that are too generous could allow an unauthorized user to gain privileges that they should not have. The permissions set by the vendor should be maintained. Any deviations from this baseline should be investigated.
CM-6(a)
AU-4(1)
CCE-80886-5 Enable rsyslog Service The rsyslog service provides syslog-style logging by default on Red Hat Enterprise Linux 8. The rsyslog service can be enabled with the following command:
$ sudo systemctl enable rsyslog.service
The rsyslog service must be running in order to provide logging services, which are essential to system administration.
CM-7(a)
CM-7(b)
CM-6(a)
AC-6
AC-6(1)
MP-7
CCE-80837-8 Add nodev Option to /dev/shm The nodev mount option can be used to prevent creation of device files in /dev/shm. Legitimate character and block devices should not exist within temporary directories like /dev/shm. Add the nodev option to the fourth column of /etc/fstab for the line which controls mounting of /dev/shm. The only legitimate location for device files is the /dev directory located on the root partition. The only exception to this is chroot jails.
CM-7(a)
CM-7(b)
CM-6(a)
AC-6
AC-6(1)
MP-7
CCE-80839-4 Add nosuid Option to /dev/shm The nosuid mount option can be used to prevent execution of setuid programs in /dev/shm. The SUID and SGID permissions should not be required in these world-writable directories. Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of /dev/shm. The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from temporary storage partitions.
CM-7(a)
CM-6(a)
CCE-80870-9 Disable Automatic Bug Reporting Tool (abrtd) The Automatic Bug Reporting Tool (abrtd) daemon collects and reports crash data when an application crash is detected. Using a variety of plugins, abrtd can email crash reports to system administrators, log crash reports to files, or forward crash reports to a centralized issue tracking system such as RHTSupport. The abrtd service can be disabled with the following command:
$ sudo systemctl mask --now abrtd.service
Mishandling crash data could expose sensitive information about vulnerabilities in software executing on the system, as well as sensitive information from within a process's address space or registers.
CM-7(a)
CM-7(b)
CM-6(a)
CCE-80871-7 Disable At Service (atd) The at and batch commands can be used to schedule tasks that are meant to be executed only once. This allows delayed execution in a manner similar to cron, except that it is not recurring. The daemon atd keeps track of tasks scheduled via at and batch, and executes them at the specified time. The atd service can be disabled with the following command:
$ sudo systemctl mask --now atd.service
The atd service could be used by an unsophisticated insider to carry out activities outside of a normal login session, which could complicate accountability. Furthermore, the need to schedule tasks with at or batch is not common.
CM-7(a)
CM-7(b)
CM-6(a)
MP-7
CCE-80873-3 Disable the Automounter The autofs daemon mounts and unmounts filesystems, such as user home directories shared via NFS, on demand. In addition, autofs can be used to handle removable media, and the default configuration provides the cdrom device as /misc/cd. However, this method of providing access to removable media is not common, so autofs can almost always be disabled if NFS is not in use. Even if NFS is required, it may be possible to configure filesystem mounts statically by editing /etc/fstab rather than relying on the automounter.

The autofs service can be disabled with the following command:
$ sudo systemctl mask --now autofs.service
Disabling the automounter permits the administrator to statically control filesystem mounting through /etc/fstab.

Additionally, automatically mounting filesystems permits easy introduction of unknown devices, thereby facilitating malicious activity.
CM-7(a)
CM-7(b)
CM-6(a)
CCE-80879-0 Disable ntpdate Service (ntpdate) The ntpdate service sets the local hardware clock by polling NTP servers when the system boots. It synchronizes to the NTP servers listed in /etc/ntp/step-tickers or /etc/ntp.conf and then sets the local hardware clock to the newly synchronized system time. The ntpdate service can be disabled with the following command:
$ sudo systemctl mask --now ntpdate.service
The ntpdate service may only be suitable for systems which are rebooted frequently enough that clock drift does not cause problems between reboots. In any event, the functionality of the ntpdate service is now available in the ntpd program and should be considered deprecated.
CM-7(a)
CM-7(b)
CM-6(a)
CCE-80880-8 Disable Odd Job Daemon (oddjobd) The oddjobd service exists to provide an interface and access control mechanism through which specified privileged tasks can run tasks for unprivileged client applications. Communication with oddjobd through the system message bus. The oddjobd service can be disabled with the following command:
$ sudo systemctl mask --now oddjobd.service
The oddjobd service may provide necessary functionality in some environments, and can be disabled if it is not needed. Execution of tasks by privileged programs, on behalf of unprivileged ones, has traditionally been a source of privilege escalation security issues.
CM-7(a)
CM-7(b)
CM-6(a)
CCE-80882-4 Disable Apache Qpid (qpidd) The qpidd service provides high speed, secure, guaranteed delivery services. It is an implementation of the Advanced Message Queuing Protocol. By default the qpidd service will bind to port 5672 and listen for connection attempts. The qpidd service can be disabled with the following command:
$ sudo systemctl mask --now qpidd.service
The qpidd service is automatically installed when the base package selection is selected during installation. The qpidd service listens for network connections, which increases the attack surface of the system. If the system is not intended to receive AMQP traffic, then the qpidd service is not needed and should be disabled or removed.
SC-13
SC-12(2)
SC-12(3)
CCE-80934-3 Configure BIND to use System Crypto Policy Crypto Policies provide a centralized control over crypto algorithms usage of many packages. BIND is supported by crypto policy, but the BIND configuration may be set up to ignore it. To check that Crypto Policies settings are configured correctly, ensure that the /etc/named.conf includes the appropriate configuration: In the options section of /etc/named.conf, make sure that the following line is not commented out or superseded by later includes: include "/etc/crypto-policies/back-ends/bind.config"; Overriding the system crypto policy makes the behavior of the BIND service violate expectations, and makes system configuration more fragmented.
SC-13
SC-12(2)
SC-12(3)
CCE-80936-8 Configure Kerberos to use System Crypto Policy Crypto Policies provide a centralized control over crypto algorithms usage of many packages. Kerberos is supported by crypto policy, but it's configuration may be set up to ignore it. To check that Crypto Policies settings for Kerberos are configured correctly, examine that there is a symlink at /etc/krb5.conf.d/crypto-policies targeting /etc/cypto-policies/back-ends/krb5.config. If the symlink exists, Kerberos is configured to use the system-wide crypto policy settings. Overriding the system crypto policy makes the behavior of Kerberos violate expectations, and makes system configuration more fragmented.
AC-17(a)
AC-17(2)
CM-6(a)
MA-4(6)
SC-13
SC-12(2)
SC-12(3)
CCE-80935-0 Configure System Cryptography Policy To configure the system cryptography policy to use ciphers only from the DEFAULT policy, run the following command:
$ sudo update-crypto-policies --set DEFAULT
The rule checks if settings for selected crypto policy are configured as expected. Configuration files in the /etc/crypto-policies/back-ends are either symlinks to correct files provided by Crypto-policies package or they are regular files in case crypto policy customizations are applied. Crypto policies may be customized by crypto policy modules, in which case it is delimited from the base policy using a colon.
Centralized cryptographic policies simplify applying secure ciphers across an operating system and the applications that run on that operating system. Use of weak or untested encryption algorithms undermines the purposes of utilizing encryption to protect data. var_system_crypto_policy=DEFAULT
AC-17(a)
AC-17(2)
CM-6(a)
MA-4(6)
SC-13
SC-12(2)
SC-12(3)
CCE-80938-4 Configure OpenSSL library to use System Crypto Policy Crypto Policies provide a centralized control over crypto algorithms usage of many packages. OpenSSL is supported by crypto policy, but the OpenSSL configuration may be set up to ignore it. To check that Crypto Policies settings are configured correctly, you have to examine the OpenSSL config file available under /etc/pki/tls/openssl.cnf. This file has the ini format, and it enables crypto policy support if there is a [ crypto_policy ] section that contains the .include /etc/crypto-policies/back-ends/opensslcnf.config directive. Overriding the system crypto policy makes the behavior of the Java runtime violates expectations, and makes system configuration more fragmented.
AC-17(a)
AC-17(2)
CM-6(a)
MA-4(6)
SC-13
CCE-80939-2 Configure SSH to use System Crypto Policy Crypto Policies provide a centralized control over crypto algorithms usage of many packages. SSH is supported by crypto policy, but the SSH configuration may be set up to ignore it. To check that Crypto Policies settings are configured correctly, ensure that the CRYPTO_POLICY variable is either commented or not set at all in the /etc/sysconfig/sshd. Overriding the system crypto policy makes the behavior of the SSH service violate expectations, and makes system configuration more fragmented.